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Chapter 1 Solutions 
 
1.1 The cross-sectional area, A, of the bar is 

( )A = =− −π 50 10 7 85 103 2 3 2x x m.  

The axial stress, σ, due to the axial load P=30kN is 

σ = = =−

P
A

30 10
7 85 10

382
3

3

x
x

MPa
.

.  

 
1.2 From (1.6) the axial strain, e, is 

e
E

= = = −σ 382 10
210 10

18 2 10
6

9
6.

.
x
x

x  

From (1.3) the axial extension, δ, is 
δ = = =− −eL 18 2 10 05 91 106 6. . .x x x m 

 
1.3 From (1.16) the in-plane strains are 

[ ] [ ]ε σ νσ ε σ νσxx xx yy yy yy xxE E
= − = −

1 1
   ,     

Re-arranging the first equation for σxx 
σ ε νσxx xx yyE= +  

and substituting into the second equation then σyy is found to be 

[ ] [ ]σ
ν

ε νεyy yy xx

E
=

−
+ =

−
+ =−

1
70 10

1 0 28
60 0 28 40 10 542

9

2
6x

x x MPa
.

. .  

Substituting σyy into εxx and re-arranging for σxx 

[ ] [ ]σ
ν

ε νεxx xx yy

E
=

−
+ =

−
+ =−

1
70 10

1 0 28
40 0 28 60 10 4 32

9

2
6x

x x MPa
.

. .  

 
1.4 From (1.23) the bulk modulus is 

( )
K

E
=

−
=

−
=

3 1 2
210 10

3 1 2 0 3
175

9

ν
x

x
GPa

( . )
 

 
1.5 With E=σ/ε, σ=P/A, ε=δ/L and δ=α(∆T) then P is given by 

( )
P

EA T

L
= = =

− −α ∆ 120 10 7 1 10 11 10 100
0 75

125
9 4 6x x x x x

kN
. ( )

.
 

illustrating that a compressive axial load of 125kN is required to cancel out the 
extension due to thermal expansion. 
 
1.6 The compressive stresses of each bar are 

( )

( )

σ
π

σ
π

copper
copper

steel
steel

P
A

P
A

= = =

= = =

−

−

150 10

25 10
76

150 10

37 5 10
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3

3 2

3

3 2

x

x
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x

x
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.

 

The contractions of each bar are 
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( )

( )

δ
π

δ
π

copper
copper

copper copper

steel
steel

steel steel

PL

E A

PL
E A x

= = =

= = =

−

−

−

−

150 10 05

120 10 25 10
318 10

150 10 0 6

200 10 37 5 10
102 10

3

9 3 2
6

3

9 3 2
6

x x

x x x
x m

x x

x x
x m

.

.

.

 

The total contraction of the composite bar is δ=δcopper+δsteel=420x10-6m. 
 
1.7 From (1.31,1.32,1.36) the in-plane strains εxx, εyy and γxy are given by 

( ) ( )ε
∂
∂

σ νσ ε
∂
∂

σ νσ

γ
∂
∂

∂
∂

xx xx yy yy yy xx

xy

u
x E

v
y E

u
y

v
x

= = − = = −

= +






 =

1 1

1
2

0

   ,    
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Chapter 2 Solutions 
 
2.1 Figure Sol2.1 illustrates a circle of radius R with an elemental strip of thickness dy 
at distance y from the x-axis. The area, dA, of the elemental strip is therefore 

dA xdy R y dy= = −2 2 2 2  
 The area of the strip is therefore given by, (2.1) 

A dA R y dy
A

R

R

= = −∫∫ ∫
−

+

2 2 2  

The integration is assisted by making the substitution y=Rsinθ, dy=Rcosθdθ 

( )A R d R d R R= = +





= +



∫∫4 4

1
2

1 2 4
2

2
2

2 2 2

0

2
2

0

2

0

2

2cos cos
sin// /

ϑ ϑ ϑ
ϑ ϑ

π
ππ π

 

 The first moment of area Qx is, (2.2) 

( ) ( )[ ]Q ydA y R y dy y R y dy R yx A
R

R

R

R

R

R

= = − = − = − − =∫∫ ∫∫
−

+

−

+

−

+

2 2
2
3

02 2 2 2 2 2 3 2/
 

Similarly, it is found that Qy=0. Therefore, as expected the coordinates of the centroid 
are xc=Qy/A=0 and yc=Qx/A=0. 
 

y

x

dy

dx

2x

R

θ

2y

 
Figure Sol2.1. A circle of radius R and elemental strip dy. 
 
2.2 The derivation of the area, first moments of area and centroid are analogous to 
those outlined in Exercise 2.1 except that the range of integration is now [0:R]. Thus, 
the area of the semicircle is 

A dA R y dy R d R
R

A

R

= = − = = +





=∫∫ ∫ ∫2 2 2
2

2
2 2

2 2

0

2 2

0

2
2

0

2 2

cos
sin/ /

ϑ ϑ
ϑ ϑ ππ π

 

The first moment of area Qx is, using the elemental strip dy shown in Figure Sol2.1 
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( )[ ]Q dA y R y dy R y
R

x A

R R

= = − = − − =∫∫ ∫2
2
3

2
3

2 2

0

2 2 3 2

0

3
/

 

The y-coordinate of the centroid is therefore 

y
Q
A

R
R

R
c

x= = =
2 3

2
4
3

3

2

/
/π π

 

The first moment of area Qy is, using the elemental strip dx shown in Figure Sol2.1 in 
which dA=ydx 

( )[ ]Q xdA x R x dx R xy A
R

R

R

R

= = − = − − =∫∫ ∫
−

+

−

+
2 2 2 2 3 21

3
0

/
 

and hence xc=Qy/A=0. 
 
2.3 Figure Sol2.3 illustrates an ellipse with elemental strip of length 2x and width dy. 
The area A of the ellipse is therefore, noting that the equation of an ellipse is 
x2/a2+y2/b2=1 

A dA xdy a
y
b

dy
a

b
b y dy

A b

b

b

b

b

b
= = = − = −∫∫ ∫ ∫ ∫− − −

2 2 1
22

2
2 2  

Using the standard indefinite integral 

a x dx
a x

a
x a x2 2

2
1 2 2

2
1
2

− = 





+ −∫ −sin  

then the area is found to be 

( ) ( )

A
a

b
b y

b
y b y

a
b

b b a
b

b b
ab

b

b

= 



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+ −








 =

=








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
















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







 =

−

−

− −
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1
2
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π π

π

 

The second moment of area Ix is, with dA=2xdy 

I y dA y xdy y a
y
b

dy a y
y
b

dyx A b

b

b

b

b

b
= = = − = −∫∫ ∫ ∫ ∫− − −

2 2 2
2

2
2

2

2
2 2 1 2 1  

Using the standard indefinite integral 

( )x ax cdx
x
a

ax c
cx
a

ax c
c

a a
x

a
c

a2 2 2 3 2
2

1

4 8 8
0+ = + − + −

−
−







 <∫ −sin    ;     

then Ix is 

( ) ( ) ( )
I a

y

b

y
b

y

b

y
b b b

y
b ab

x

b

b

=
−

−






 −

−
− −

−






















=−

−

2
4

1
8 1

1
1

8 1

1
1 42

2

2

3

2

2

2 2 2

1
2 3

/ / / /
sin

/ π

Similarly, it can be shown that Iy=πa3b/4. 
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x
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+b

+a-a
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2x

 
Figure Sol2.3. An ellipse with half major and minor axes a and b. 
 
2.4 The centroidal cordinates for rectangles 1 and 2 are (xc1,yc1)=(27.5,2.5) and 
(xc2,yc2)=(2.5,25). The areas of rectangles 1 and 2 are A1=225mm2 and A2=250mm2 
with the total cross-sectional area equal to A=A1+A2=475mm2. From (2.2) and (2.3) 
Qy and xc are 

Q x A x A x A x
Q

Ay ci i c c
i

c
y= = + = = =∑ 1 1 2 2

36 812 14 34, .mm    ,    mm  

and similarly with Qx and yc given by 

Q y A y A y A y
Q

Ax ci i c c
i

c
x= = + = = =∑ 1 1 2 2

36 812 14 34, .mm    ,    mm 

with xc=yc and Qx=Qy due to the symmetry of the bracket about the (x,y) axes. 
 From (2.5) and (2.6) the second moments of area of rectangles 1 and 2 are 
given by, with respect to the centroidal axes 

I I

I I

xc yc

xc yc

1

3

1

3

2

3

2

3

45 5
12

5 45
12

5 50
12

52 083
50 5

12
520

= =

= = = =

( ) ( )

( )
,

( )

= 468mm   ,   = 37,968mm

mm   ,   mm

4 4

4 4

 

Use of the parallel-axis theorem (2.8) and (2.9) for rectangle 1 gives Ix and Iy with 
respect to axes (x,y) 

I I A y I I A xx xc c y yc c1 1 1 1
2 4

1 1 1 1
2 41875 208 125= + = = + =, ,mm    ,    mm  

and similarly for rectangle 2 
I I A y I I A xx xc c y yc c2 2 2 2

2 4
2 2 2 2

2 4208 333 2 083= + = = + =, ,mm    ,    mm  

Finally, Ix and Iy are given by 
I I I I I Ix x x y y y= + = = + =1 2

4
1 2

4210 208 210 208, ,mm    ,    mm  

with Ix=Iy as expected. 
 
2.5 From (2.10) with dA=bdy then Ixy is given by 

I xydA bx ydy bx
y

xy A h

h

h

h

= = =








 =∫∫ ∫−

−
/

/

/

/

2

2 2

2

2

2
0  

and is seen to be equal to zero due to the symmetry about the coordinate axes. 
 
2.6 From (2.13) the polar second moment of area for the ellipse of Exercise 2.3 is 
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( )I I I
a b a b ab

a bp x y= + = + = +
π π π3 3

2 2

4 4 4
 

 
2.7 From (2.15) the radii of gyration rx and ry for the ellipse of Exercise 2.3 are 

r
I

A
ab

ab
b

r
I

A
a b

ab
a

x
x

y
y= = = = = =

π
π

π
π

3 34
2

4
2

/ /
   ,     
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Chapter 3 Solutions 
 
3.1 From (3.12) the maximum shear stress is given by 

( )
τ

π π
max

( )
= = =

−

16 16 10 10

50 10
407

3

3

3 3

T
D

x

x
MPa  

 
3.2 From (3.1) the polar moment of area, J, is 

( )
J

D
= = =

−
−π π4 3 4

6 4

32

50 10

32
6136 10

x
x m.  

and from (3.11) the angle of twist is 

( )θ = = = =
−

−TL
GJ

10 10 125

80 10 6136 10
2 55 10 015

3

9

3
6

x x

x x
x radians

.

.
. . o  

 
3.3 From Example 3.1 then the maximum shear stress occurs at the smallest diameter 
of d1=50mm 

( )
( )

τ
π π

max = = =
−

16 16 12 10

50 10
489

1
3

3

3 3

T
d

x

x
MPa  

and the angle of twist is 

( )

( )
( ) ( ) ( )

θ
π

π

=
−

−










=
−

−














= =
− − − −

32
3

1 1

32 12 10 1

3 80 10 75 10 50 10

1

50 10

1

75 10
01147 657

2 1 1
3

2
3

3

9 3 3 3 3 3 3

TL
G d d d d

x x

x x x x x x
radians. . o

 

 
3.4 From (3.16) the mean shear stress is 

( ) ( )
τ

π π
m

m

T
R t

= = =
− −2

100

2 3125 10 01 10
1632 3 2 3. .x x

MPa  

 
3.5 Re-arranging (3.16) for wall-thickness t 

( ) ( )
t

T
Rm m

= = =
−2

15 10

2 40 10 65 10
2 32

3

3 2 6π τ π

.
.

x

x x
mm 

 
3.6 From (3.1) and (3.2) the polar moments of area of the inner solid bar, JA, and 
outer tube, JB, are 

( )

( ) ( ) ( )[ ]
J

R

J R R

A
A

B B A

= = =

= − = − =

−
−

− − −

π π

π π

4 3 4

8 4

4 4 3 4 3 4 7 4

2

12 5 10

2
383 10

2 2
25 10 12 5 10 575 10

.
.

. .

x
x m

x x x m

 

From (3.21) the angle of twist is 



 8

( )
( ) ( )θ =

+
=

+
= =

− −

TL
G J G JA A B B

5 10 0 75

45 10 383 10 30 10 575 10
01976 11324

3

9 8 9 7

x

x x x x
radians

.

. .
. . o

 
3.7 From (3.20) the torques in the inner solid bar, TA, and outer tube, TB, are 

( )
( ) ( )

( )
( ) ( )

T
G J

G J G J
T

T
G J

G J G J
T

A
A A

A A B B

B
B B

A A B B

=
+







 =

+











 =

=
+







 =

+











 =

−

− −

−

− −

46 10 383 10

46 10 383 10 30 10 5 75 10
5 10 454

30 10 5 75 10

46 10 383 10 30 10 575 10
5 10 4 55

9 8

9 8 9 7

3

9 7

9 8 9 7

3

x x

x x x x
x Nm

x x

x x x x
x kNm

.

. .

.

. .
.

 

and from (3.22) the corresponding maximum shear stresses are 

( )

( )

τ

τ

A
A A

A

B
B B

B

T R
J

T R
J

,max

,max

.

.

.

.

= = =

= = =

−

−

−

−

454 12 5 10

383 10
148

4 55 10 25 10

575 10
198

3

8

3 3

7

x

x
MPa

x x

x
MPa
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Chapter 4 Solutions 
 
4.1 From (4.2) and (4.4) the principal stresses in the pipe are 

σ σ
σ

1

3

3 2
150 6895 10 08

15 10
18 4

2
9 2= = = = =−

pr
t

x x x
x

MPa   ,    MPa
. .

. .  

 
4.2 From the Hookian equations (1.16) we have 

[ ] [ ]ε σ νσ ε σ νσθθ θθ θθzz zz zzE E
= − = −

1 1
   ,     

Solving these for the in-plane stresses then we have 

[ ] [ ]

[ ] [ ]

σ
ν

ε νε

σ
ν

ε νε

θθ

θθ θθ

zz zz

zz

E

E

=
−

+ =
−

+ =

=
−

+ =
−

+ =

−

−

1
70 10
1 0 3

429 0 3 10 75

1
70 10
1 0 3

1821 0 3 10 150

2

9

2
6

2

9

2
6

x
x1,821 x MPa

x
x429 x MPa

.
.

.
.

 

The maximum in-plane shear stress is, (4.7) 

τ
σ σ σ σθθ

max

( )
.=

−
=

−
=

−
=1 2

6

2 2
150 75 10

2
375zz x

MPa  

 
4.3 With the pressure p equal to ρgh and σθθ=σ2 not exceeding the maximum 
allowable stress σallow=300MPa/S where S(=10) is the safety factor then from (4.11) 
we find the maximum permissible depth of water to be 

( )
h

t

grS
allow= = =

−
2 2 25 10 300 10

1000 9 81 1 10
153

3 6
σ

ρ

x x

x x x
m

.
 

 
4.4 From (4.5) and (4.12) the circumferential strains for the cylinder, εc, and hemi-
spherical end caps, εs, are 

( )ε
ν

ε νc
c

s
s

pr
Et

pr
Et

= −





= −1
2 2

1   ,     

where E and ν denote Young’s modulus and Poisson’s ratio respectively, p is the 
internal pressure, r is the radius of the vessel and tc and ts are the wall thicknesses of 
the cylinder and hemi-spherical ends respectively. Equivalence of the circumferential 
strains εc and εs yields 

t ts c=
−
−







1
2

ν
ν

 

and with tc=1mm then ts=0.4mm. 
 
4.5 From (4.9) the absolute maximum shear is equal to 

τ
σ

σmax = = =1
22 2

pr
t

 

The cylinder pressure, p, is 

p
P
A

P
r

= =
π 2  

where P is the force acting on the piston and r is the piston radius. Substituting p into 
τmax then 
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τ
τ

πmax = =Y

S
P
rt2

 

where τY is the yield stress in pure shear and S is the safety factor. Re-arranging for 
the cylinder wall thickness t 

t
SP
r Y

= = =−2
2 10

2 40 10 150 10
2 65

3

3 6π τ π
(50 )

( )
.

x
x x

mm  

 
4.6 Re-arranging (4.11) for internal pressure p with σUTS denoting the ultimate tensile 
stress then 

p
t

r
UTS= = =

−

−

2 2 737 10 10
65 10

227
6 3

3

σ x x
x

MPa
( )

 

 
4.7 From (4.19) Ix and Iy are given by 

I I r tx y= = = =π π3 3 425 1 49 087x x mm,  
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Chapter 5 Solutions 
 
5.1 From the equations of equilibrium the two unknown reactions RA and RB are found 

∑
∑

=∴=⇒=−−=

=+⇒=−−+=

kN  and   kN         : 

kN         : 

20800)8(40)4(60)7(0

100040)2(300

AAB

BABA
v

RRRM

RRRRF
 

The shear force, Vx, and bending moment, Mx, for the four intervals i) 0<x<3, ii) 
3<x<5, iii) 5<x<7 and iv) 7<x<8 are: 
 
i) 0<x<3 

kNm

kN

xxRM

RV

Ax

Ax

20

20

==

==
 

ii) 3<x<5 

( ) ( )
kNm

kN

2
3

3020
2
3

30

)3(3020)3(30
22 −

−=
−

−=

−−=−−=

x
x

x
xRM

xxRV

Ax

Ax

 

iii) 5<x<7 

kNm

kN

)4(6020)4(60

2060

−−=−−=

−=−=

xxxxRM

RV

Ax

Ax  

iv) 7<x<8 

kNm

kN

)4(6)7(8020)4(6)7(

4060

−−−+=−−−+=

=−+=

xxxxxRxRM

RRV

BAx

BAx  

with Vx and Mx illustrated in Figure Sol5.1. 
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A B

R
A R

B

40kN30kN/m

V
x

0

0

20

20

40

40

60

-20

-20

-40

-40

M
x

 
Figure Sol5.1. Shear force and bending moment diagrams for the simply supported 
beam of Exercise 5.1. 
 
5.2 From the equations of equilibrium the two unknown reactions are 

R R
WL

A B= = = =
2

5 10 5
2

12 5
3x x

kN.  

Taking moments at an arbitrary cut at a distance x from the left hand end 

M Wx
x

R x M R x
Wx WLx Wx

xx A xx A+ − = ⇒ = − = −
2

0
2 2 2

2 2

       

Differentiating Mxx with respect to x and setting dMxx/dx=0 we find that the maximum 
bending moment occurs at x=L/2. Substituting x=L/2 into Mxx then the maximum 
bending moment is given by 

M
WL

max ,= = =
2 3 2

8
5 10 5

8
15 625

x x
Nm 

For the rectangular section the second moment of area is given by, Example 2.3 
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( )( )
I = =

− −
−

50 10 75 10

12
17578 10

3 3 3

6 4
x x

x m.  

From (5.30) the maximum tensile and compressive stresses occur at 
y=±h/2=±37.5mm 

( ) ( )
σ max

max / , .

.
= ± = ± = ±

−

−

M h

I

2 15 625 37 5 10

17578 10
333

3

6

x

x
MPa  

5.3 From Example 5.2 the shear force, Vx, at a distance x from the left hand end of the 
beam is 

V W
L

xx = −



2

 

and attains maximum and minimum values at x=0 and x=L respectively 

V
WL

V Vmax min max. .= = = = − = −
2

5 10 5
2

12 5 12 5
3x x

kN   ,    kN  

From the beam shear formula (5.40) and the rectangular cross-section examined in 
Example 5.4 then the maximum shear stress at a given section is 

τ max =
V h

I
x

2

8
 

and occurs at the neutral axis of the beam. Substituting Vmax and Vmin we have 

( )
( )τ max,min

.

.
= ± = ±

−

−

12 5 10 75 10

8 17578 10
5

3 3 2

6

x x

x
MPa  

and are seen to be considerably less than the maximum tensile and compressive 
bending stresses of Exercise 5.2. 
 
5.4 From the equations of equilibrium the two unknown reactions RA and RB are found 

∑

∑

=⇒=⇒=





−=

=+=

63
0

3
2

2
0

2
0

WL
R

WL
R

LWL
LRM

WL
RRF

ABB

BA
v

               : 

   : 
 

where the centre of gravity of the distributed load acts at x=2L/3. From the equations 
of equilibrium for the free body diagram of Figure Sol5.4 the bending moment is 
given by 

∑ −=⇒=−





+=

L
WxWLx

MxR
x

L
Wx

MM xAx 66
0

32
0

32

         :  
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x V
x

M
x

A

R
A

Wx /2L
2

Wx/L

 
Figure Sol5.4. Free body diagram for the beam of Figure 5.27 cut at a distance x from 
support A. 
 
Substituting the bending moment into (5.41) we have 

L
WxWLx

EIv
66

''
3

−=  

Integrating with respect to x then the slope of the beam is 

1

42

2412
' C

L
WxWLx

EIv +−=  

and integrating once more then the deflection is 

21

53

12036
CxC

L
WxWLx

EIv ++−=  

The boundary condition v=0 at x=0 reveals that C2=0 and the boundary condition v=0 
at x=L gives C1=-21WL3/1080. Substituting C1 and C2 into the above expressions for v 
and v′ and re-arranging we have 

( )

( )4224

4224

15307
360

'

7103
360

xxLL
LEI

W
v

LxLx
LEI

Wx
v

+−−=

+−−=
 

The maximum deflection, δmax, can be determined from the condition that the slope of 
the beam will be horizontal at the point of maximum deflection, xmax. Substituting 
v′=0 in the above and re-arranging we have the following quadratic equation for 
unknown x2 

073015 4224 =+− LxLx  
Solving for x2 

22

30
480

1 Lx 







±=  

which gives the two solutions x=1.3154L and x=0.5193L. Since x≤L then the 
maximum deflection occurs at xmax=0.5193L. Finally, substituting xmax into v we 
arrive at δmax 

( )
EI

WL
Lv

4

max 00652.05193.0 =−=δ  

 
5.5 From the equations of equilibrium for the entire beam 

R R
WL WL L

R LA B A+ − = − =
2

0
2

3
4

0   ,     

we find that the reactions RA and RB are given by 
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R
WL

R
WL

A B= =
3

8 8
   ,     

As noted in Example 5.8, when using Macaulay's method, if a distributed load does 
not extend to the right hand end of the beam then we need to extend and 
counterbalance the distributed load to the right hand end of the beam. The bending 
moment at a cut x-x (L/2<x<L) is, Figure 5.27b) 

M Wx
x

R x W x L
x L

M
WLx W x L Wx

xx A

xx

+ − − −
−

=

⇒ = +
−

−

2
2

2
2

0

3
8

2
2 2

2 2

{ / }
{ / }

{ / }
   

 

Substituting Mxx into the flexure formula (5.41) 

EIv
WLx W x L Wx

' '
{ / }

= +
−

−
3

8
2

2 2

2 2

 

and integrating twice 

EIv
WLx W x L Wx

C

EIv
WLx W x L Wx

C x C

'
{ / }

{ / }

= +
−

− +

= +
−

− + +

3
16

2
6 6

3
48

2
24 24

2 3 3

1

3 4 4

1 2

 

From the two boundary conditions v=0 at x=0 and x=L we find that the constants of 
integration C1 and C2 are 

C
WL

C1

3

2

9
384

0= − =   ,     

and upon substitution into v we arrive at the following expression for the deflection of 
the entire beam 

EIv
WLx W x L Wx WL x

= +
−

− −
3 4 4 3

16
2

24 24
9

384
{ / }

 

Macaulay's method informs us that a term in curly brackets is ignored if it is either 
zero or negative. Therefore, when x≤L/2 we have 

( )v
Wx

EI
x Lx L x

L
= − − + ≤ ≤

384
16 24 9 0

2
3 2 3    ;     

 
5.6 The beam of Figure 5.28 has three unknown reactions (RA, RB and MA) but only 
two independent equations equilibrium can be written and as a result the beam is 
statically indeterminate to the first degree. Let reaction RB be the redundant reaction. 
From the equations of equilibrium 

R R WL R WL R

M R L WL
L

M
WL

R L

A B A B

A B A B

+ − = ⇒ = −

+ − = ⇒ = −

0

2
0

2

2

      

      
 

The bending moment at an arbitrary cut x-x is 

M M Wx
x

R x M R x M
Wx

xx A A xx A A+ + − = ⇒ = − −
2

0
2

2

       

Substituting RA and MA into Mxx and using the flexure formula (5.41) we have 

EIv WLx R x
WL

R L
Wx

B B' '= − − + −
2 2

2 2
 

Performing two integrations we have 
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EIv
WLx R x WL x

R Lx
Wx

C

EIv
WLx R x WL x R Lx Wx

C x C

B
B

B B

'= − − + − +

= − − + − + +

2 2 2 3

1

3 3 2 2 2 4

1 2

2 2 2 6

6 6 4 2 24

 

Applying the boundary conditions v'=0 at x=0 and v=0 at x=0 we find that C1=0 and 
C2=0. Applying the boundary condition v=0 at x=L gives the redundant reaction 

R
WL

B =
3

8
 

The unknown reactions RA and MA are now given by 

R
WL

M
WL

A A= =
5

8 8

2

   ,     

Substituting RB, C1 and C2 into v and collecting terms then the deflection for the beam 
is given by 

( )v
Wx

EI
L x Lx= − + −

2
2 2

48
3 2 5  

 
5.7 The beam has three unknown reactions (RA, RB and MA) but only two independent 
equations of equilibrium and is therefore statically indeterminate to the first degree. 
Letting RB be the redundant reaction then from the equations of equilibrium 

R WL R M
WL

R LA B A B= − = −   ,    
2

2
 

Using the method of superposition we now proceed to apply the distributed load W to 
the released beam, Figure Sol5.7b), and the redundant reaction RA to the released 
beam, Figure Sol5.7c). Since the deflection of the original beam is zero at end B then 
we have the following compatibility equation 
δ δ δB B B= − =1 2 0  
The force-displacement relations give the deflections δB1 and δB2 

δ δB B
BWL

EI

R L

EI1

4

2

3

8 3
= =   ,     

which upon substituting into the compatibility equation gives 

δ B
BWL

EI

R L

EI
= − =

4 3

8 3
0  

and solving for RB 

R
WL

B =
3

8
 

The remaining reactions RA and MA are found from the above equilibrium equations 

R
WL

M
WL

A A= =
5

8 8

2

   ,     

 



 17

B

δ
B 1

δ
B 2

R
B

R
B

R
A

M
A

L

W

W

A
a)

b)

c)

 
Figure Sol5.7. Propped cantilever beam of Exercise 5.7. a) The propped cantilever 
beam subject to a uniformly distributed load. b) The released beam with redundant 
reaction RB and load W applied. c) The released beam with RB applied. 
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Chapter 6 Solutions 
 
6.1 With I=πd4/64 for a solid circular cross-section of diameter d and substituting I 
into (6.10) and re-arranging for d we have 

d
P L

E
cr=









 =







 =

64 64 200 10 4
210 10

75
2

3

1 4 3 2

3 9

1 4

π π

/ /
x x x

x x
mm  

 
6.2 The second moments of area with respect to centroidal coordinates (x,y) for the 
square, circle and equilateral triangle shown in Figure Sol6.2 are 

square:       ,       ,    

circle:      ,       ,    

equilateral triangle:       ,       ,    

I I I
Ab

A b r
I
A

A
A

I I I
Ab

A b r
I
A

A
A

I I I
Ab

A b r
I
A

A
A

xx yy

xx yy

xx yy

= = = = = = ≈

= = = = = = ≈

= = = = = = ≈

2
2 2

2
2 2

2
2 2

12 12
0 083

4 4
0 0797

36
3

4 8 3
0 0722

. &

.

.

π
π

 
From (6.14) σcr is given by 

σ
π

cr

Er
L

=
2 2

2
 

with σcr seen to be proportional to r2. Therefore, the struts from largest to smallest σcr 
are the square, circular and equilateral triangle cross-sections. 
 

x x
x

y y
y

b

b b

b

b

b  
Figure Sol6.2. Square, circle and equilateral triangle. 
 
6.3 With reference to Figure Sol6.3 the second moments of area Ix and Iy are, (2.5) 
and (2.6) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

I y dA a tds a tad a t

I x dA a tds a tad a t

x A

y A

= = = =

= = = =

∫∫ ∫∫
∫∫ ∫∫

2 2 2

0

2 3

2 2 2

0

2
3

4 4

4 4

cos cos

sin sin

/

/

θ θ θ π

θ θ θ π

π

π
 

with Ix=Iy due to symmetry. The area of the section is 

( )A dA tds t ad at
A

= = = =∫∫ ∫ ∫4 4 2
0

2
θ π

π /
 

Finally, the radius of gyration is, (6.12) 

r
I
A

a t
at

a
= = =

π
π

3

2 2
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x

y

t

a
ds

dθ
θ

 
Figure Sol6.3. One quadrant of a circular tubular cross-section. 
 
6.4 From the equations of equilibrium the compressive load acting on the strut is 
equal to √3W. The cross-sectional area and second moment of area of the strut are 

( )
( )( )

A

I

= =

= =

− −

− − −

50 10 2 5 10

1
12

50 10 50 10 52083 10

3 2 3 2

3 3 3 7 4

x x m

x x x m

.

. &
 

From (6.12) the radius of gyration is 

r
I
A

= = =
−5 2083 10

0 0144
7.

.
x

2.5x10
m

-3
 

The strut is built-in at one end and pin-jointed at the other end where the load W acts 
so that from (6.42) the effective length of the strut is Le=0.7L=1.75m and the critical 
buckling load is, (6.31) 

( ) ( )
P

EA

L r
cr

e

= = =
−π π2

2

2 9 3

2

210 10 2 5 10

175 0 0144
351

/

.

. / .

x x x x
kN  

Thus, the strut will fail due to buckling when W exceeds 351kN. 
 
6.5 The area and second moment of area of the rectangular tube are 

( ) ( )

[ ]
A

I

= − =

= − =

−

−

0 2 01 018 0 08 56 10

1
12

0 2 01 018 0 08 8 986 10

3 2

3 3 6 4

. . . . .

. . . . . &

x x x m

x x x m
 

From (6.32) the critical buckling load is 

P
EI

Lcr = = =
−4 4 210 10 8 986 10

5
9933

2

2

2 9 6

2

π π x x x x
kN

.
.  

and the critical stress is 

σ cr
crP

A
= = =−

993 3 10
5 6 10

177 4
3

3

.
.

.
x

x
MPa  

 
6.6 The stress and eccentricity ratio are 
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P
A
ey
r

eA
S

= =

= = =

−

−

−

350 10

3270 10
107

0 025 3270 10
144 10

0 5677

3

6

2

6

6

x

x
MPa

x x
x

.
.

 

The critical buckling load is, (6.10) 

P
EI

Lcr = = =
−π π2

2

2 9 6

2

210 10 11 10
5

912
x x x x

kN  

From (6.52) and (6.57) the maximum deflection and stress are 

δ
π

σ
π

=








 −













=

= +






















=

e
P

P

P
A

ey
r

P
P

cr

cr

sec .

secmax

2
1 19 5

1
2

2152

mm

MPa

 

 
6.7 From Table 6.2 the constant a is equal to 1/7500 and the slenderness ratio is 

l
L
r

= = =−

2
39 6 10

50505
3.

.
x

 

Therefore, from (6.61) the critical stress according to the Rankine-Gordon formula is 

σ
σ

R
Y

al
=

+
=

+
=

1
300 10

1
50 505

7500

224
2

6

2

x
MPa

.
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Chapter 7 Solutions 
 
7.1 The σxx stress is 

σ xx

P
A

= = − = −−

75 10
1500 10

50
3

6

x
x

MPa  

From (7.8) and (7.12) the local direct and shear stresses on the cut plane ab are 

( )

( )

σ σ ϑ σ ϑ

σ σ ϑ

τ σ ϑ σ ϑ ϑ

x x xx xx

xx

x y xx xx

' '

' '

cos cos .

cos .

sin sin cos .

= + = = −

= − = −

= − = − =

1
2

1 2 37 5

1
2

1 2 12 5

1
2

2 2165

2 MPa

MPa

MPa

y'y'  

 
7.2 From the stress transformation equations we have 

σ σ τx x y y x y' ' ' ' ' '= = =195 105 50MPa   ,    MPa   ,    MPa  

observing that the sum of the global and local stresses are equal, (7.13) 
σ σ σ σxx yy x x y y+ = +' ' ' '  

 
7.3 The centre C, point A, point B and radius R of Mohr’s circle are, see §7.5.1 

[ ]

( ) ( ) ( )
( ) ( ) ( )

C

A

B

R

xx yy

xx xy

yy xy

xx yy
xy

=
+







 = −

= = = −

= = − = −

=
−






 + =

σ σ

ϑ σ τ

ϑ σ τ

σ σ
τ

2
0 25 0

0 50 50

90 100 50

2
9014

2

2

, ,

, ,

, ,

.

o

o  

Mohr’s circle can now be plotted and is shown in Figure Sol7.3. 
 

σ
x x’ ’

τ
x y’ ’

O P
1

A( =0 )θ
o

B( =90θ
o

)

-2θ
p 12θ

p 2 CP
2

S
2

S
1

2θ
s 1

2θ
s 2

D’

D( =45 )θ
o

R

τ
m a x

τ
m i n

β

θ(+ve.)

 
Figure Sol7.3. Mohr’s circle for the stress element of Exercise 7.3. 
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The principal stresses and associated planes are 

σ
σ

ϑ ϑ

ϑ ϑ ϑ

1

2

2 1
1

2

1 2 1

25 9014 6514

25 9014 11514

2 180 180
2
3

146 31 7316

2 180 2 16316 1684

= + = − + =
= − = − − = −

= − ∠ = − 





= =

= + = −

−

OC R

OC R

ACPp p

p p p

. .

. .

tan . .

. .

o o o o

o o o

   ;    

   ;       or   

 

The maximum and minimum shear stresses and associated planes are 
τ
τ

ϑ ϑ

ϑ ϑ ϑ

max

min

.

.

tan . .

.

= =
= − = −

= ∠ = 





= =

= + =

−

R

R

ACSs s

s s s

9014

9014

2
3
2

56 31 2815

2 180 2 11815

2 2
1

2

1 2 1

o o

o o

   ;    

   ;    

 

The stresses on the plane θ=-45° are represented by points D and D′ on Mohr’s circle 
shown in Figure Sol7.3. With angle β given by 

β ϑ

σ β

τ β

σ σ β

= − ∠ = − 





= − =

= + = − + =

= = =

= = − = − − = −

−2 90
2
3

90 33 69 56 31

25 9014 56 31 25

9014 56 31 75

25 9014 56 31 75

1
1ACP

D OC R

D R

D OC R

x x

x y

y y x x

o o o o

o

o

o

tan . .

( ) cos . cos .

( ) sin . sin .

( ' ) cos . cos .

' '

' '

' ' ' '

 

 
7.4 Mohr’s circle can be schematically constructed by positioning the centre, C, of the 
circle and determining its radius, R, as follows for the three requested cases: 
 
a) Uniaxial (σσxx=σσ, σσyy=ττxy=0) 
 

C

R

xx yy

xx yy
xy

=
+







 = 





=
−






 + =

σ σ σ

σ σ
τ

σ

0
0

2
0

2 2

2

2

, ,

 

 
b) Equi-biaxial (σσxx=σσyy=σσ, ττxy=0) 
 

[ ]C

R

=

=

σ ,0

0
 

noting that Mohr’s circle reduces to a point. 
 
c) Pure Shear (σσxx=σσyy=0, ττxy=ττ) 
 

[ ]C

R

=

=

0 0,

τ
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Each of the above cases is correspondingly illustrated in Figure Sol7.4. 
 

a) c)b)

σ
x x’ ’

σ
x x’ ’σ

x x’ ’

τ
x y’ ’

τ
x y’ ’τ

x y’ ’

O OC[ /2,0]σ C[0,0]C[ ,0]σ

σ/2 τ

Figure Sol7.4. Mohr’s circle for the cases of a) uniaxial, b) equi-biaxial and c) pure 
shear loadings. 
 
7.5 (i) With I1, I2 and θp given by 

I
I I I I

I
I

I I
x y x y

xy p
xy

x y
1 2

2

2

2 2

2
, =

+
±

−





 + = −

−
   ,    tan2ϑ  

and since Ix=Iy then 

I I I r r

I I I r r

x xy

x xy

p p p

1
4

2
4

2
4 4

16
4

9
1
8

4
9

9 18 128
144

16
4

9
1
8

4
9

2
16

2 2 90 45

= + = − + −





=
+ −








= − = − + +





=
−





= ∞ = =

π
π π

π π
π

π
π π

π

ϑ ϑ ϑtan    ;       ;    o o

 

(ii) With r=10mm then from the Ix, Iy and Ixy expressions given 
I I Ix y xy= = = −549 1654 4mm    ,    mm  

and from the transformation equations 

I
I I I I

I I I

I I

x y
x y x

xy x xy

x y xy

', '

' '

cos sin sin

cos .

=
+






 ±

−





 = =

= = −

2 2
2 2 2 692 406

2 82 5

4 4

4

ϑ ϑ ϑ

ϑ

m m mm   and  mm

mm

 
7.6 With θ=30° then cos2θ=1/2 and sin2θ=√3/2 and substituting Ix, Iy and Ixy into 
(7.39) and (7.41) we find that Ix′=Iy, Iy′=Ix and Ix′y′=Ixy as required. 
 
7.7 From (7.54) the shear modulus, G, for the aluminium alloy and steel are 

( ) ( )

( ) ( )

G
E

G
E

al
al

al

steel
steel

steel

=
+

=
+

=

=
+

=
+

=

2 1
70

2 1 0 33
26

2 1
210

2 1 0 3
81

ν

ν

.

.

GPa

GPa
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Chapter 8 Solutions 
 
8.1 Since θ is taken as positive for an anticlockwise rotation then θ=-30° in the 
present case. From (8.10) the local strains are 

ε

γ

x x y y

x y

' ', ' '

' '

( )
cos( ) sin( )

, .

( )
sin( ) cos( ) .

= 





±
− −





− ± −

= −

= −
− −





− + − =

− −
−

− −

−
−

−

500 + (-300)
x x

x

x x

x
x

x

2
10

500 300
2

10 60
200 10

2
60

213 10 134 10

2
500 300

2
10 60

200 10
2

60 396 4 10

6 6
6

6 6

6
6

6

o o

o o

so that γx′y′ is equal to 793x10-6. 
 
8.2 From (8.11) the principal strains ε1 and ε2 are 

ε
ε ε ε ε γ

1 2

2 2

6 6

2 2 2
190 10 360 10, ,=

+
±

−





 +







 = − −− −xx yy xx yy xy x x  

From (8.11) we obtain the planes of the principal strains 

2
80

350 200
8

15
1 1ϑ p =

− − −






= 





− −tan
( )

tan  

which has the two roots of θp=-14° and 76° for θp in the range 0≤θp≤180°. To 
establish which angle is associated with either ε1 and ε2 then let us examine, say, θp=-
14° for εx′x′, (8.10) 

ε x x' ' ( )
( ) ( )

cos( ) sin( )− =
− + −

+
− − −

− + −

= −

− − −

−

14
350 200

2
10

350 200
2

10 28
80
2

10 28

360 10

6 6 6

6

o o ox x x

x
observing that εx′x′ (-14°)=ε2 so we conclude that θp2=-14° and θp1=76°. The principal 
strains are illustrated graphically in Figure Sol8.2a). 
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a) b)  
Figure Sol8.2. Schematic illustration of strains. a) Principal stress element. b) 
Maximum shear strain element. 
 
The maximum shear strain is, (8.12) 
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= −x  

and therefore γmax=170x10-6 and is illustrated graphicaly in Figure Sol8.2b). 
 
8.3 With θa=0°, θb=60° and θc=120° we find that the system of equations (8.18) 
reduces to 
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which result in the global strains εxx=60x10-6, εyy=246x10-6 and γxy=-149x10-6. 
We will use the transformations equations to determine the principal strains 

and their associated planes. From (8.11) the principal strains are 
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and with principal planes 
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Inserting 19.33° into (8.10) we find that θp2=19.33° and therefore 
θp1=90°+θp2=109.33°. These results can be compared with Example 8.2 which 
alternatively determined the principal strains and planes using Mohr's circle. 
 
8.4 Points A and B, centre C and radius R of Mohr’s circle for the in-plane strains 
εxx=250x10-6, εyy=-150x10-6 and γxy=120x10-6 are as follows 
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with Mohr's strain circle illustrated in Figure Sol8.4. From Mohr’s circle we find the 
principal strains and planes 

ε

ε
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The maximum shear strain (γ/2)max=R so that γmax=418x10-6. From Mohr’s circle the 
planes of the maximum and minimum shear strains are 
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Figure Sol8.4. Mohr’s circle for the in-plane strains εxx=250x10-6, εyy=-150x10-6 and 
γxy=120x10-6. 
 
8.5 The average normal strain εavg, centre C, points A and B and radius R of Mohr’s 
strain circle are 
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Mohr’s circle can now be constructed and is shown in Figure Sol8.5. Since we are 
required to determine the strain components on an element that is rotated by 20° in a 
clockwise direction then θ=-20°. From Figure Sol8.5 the principal plane θp2 is given 
by 
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1 11
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300 200
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
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= − = −− −tan tan . o  

so that β=2θ-2θp2=40°-26.57°=13.43°. From triangle DEC we find the local strains 
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and from triangle D′FC we find the remaining local strain εy′y′ 
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Figure Sol8.5. Mohr’s circle for the in-plane strains εxx=300x10-6, εyy=-100x10-6 and 
γxy=100x10-6. 
 
8.6 From (8.10) the local strains are 
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so that γx′y′ is equal to 214x10-6. 
 From the Hookian equations (1.16) we have 
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Solving these for the in-plane stresses then we have 
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8.7 With θa=0°, θb=45° and θc=90° then the system of equations (8.18) reduce to 
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which result in the global strains εxx=65x10-6, εyy=25x10-6 and γxy=100x10-6. From 
(8.11) the principal strains are 
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and from (8.11) we obtain the planes of the principal strains 
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= =− −tan tan . . o  

which has the two roots of θp=34.1° and 124.1° for θp in the range 0≤θp≤180°. 
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Chapter 9 Solutions 
 
9.1 From (9.10) the in-plane strains are 

[ ] [ ]ε σ νσ ε σ νσxx xx yy yy yy xxE E
= − = −

1 1
   ,     

and substituting into the strain energy density, (9.9), we have 
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2 21
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Integrating U0 throughout the entire volume of the plate then the strain energy is given 
by 
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9.2 From (9.4) the strain energy density, U0, is equal to σε/2 so that the strain energy 
is given by 
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where A is the cross-sectional area of the bar and is a function of x. With σ(x)=W/A(x) 
then U is 
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It remains to find A(x). Linearly interpolating across the length of the bar from d1 to d2 
then 
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and substituting A(x) into U 
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The integral is seen to be of the following general form 
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Performing the integration then U is found to be 
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as required. 
 From Castigiliano's second theorem then the displacement of the bar is, (9.59) 

δ
∂
∂ π
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U
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E d d
4

1 2

 

When d1=d2=d then the bar is of constant cross-section and δ is given by 

δ
π

=
4

2

WL
E d

 

and is seen to agree with δ=WL/AE where A=πd2/4. 
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9.3 Resolving forces vertically at joint B then the force, F, in each member is 

F
P

=
2cosϑ

 

and the length, L, of each member is d/cosθ. Considering member BC then the strain 
energy is, (9.12) 
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with x taken along the member axis. Substituting for σxx and L then 

U
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Due to symmetry UAB=UBC so that the total strain energy, U, of the frame is 
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From Castigilano’s second theorem (9.59) the displacement, δB, at joint B is 
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9.4 Re-arranging (9.49) for applied load W 
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The shear stress is given by (9.51) 
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and the bending stress is given by (9.52) 
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9.5 Letting ls(=nd) denote the solid length then from (9.40) we have 
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From (9.42) with τ≤120MPa and re-arranging for D 

D
d
W

d
d= = =

τπ π3 6 3
6 3

8
120 10

8 35
1346 10

x
x

x.  

Eliminating D from these two equations we have 
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It follows that the mean coil diameter is 
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9.6 Considering the right hand side of the ring shown in Figure 9.19 then the bending 
moment, M, at angle θ is seen to be 

( ) ( )M R R P RP= − = −cos cosϑ ϑ1  
For pure bending the strain energy, U, of a beam is given by (9.35) which in the 
present case is 
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substituting M we have 
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Performing the integration  
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An application of Castigliano’s second theorem, (9.59), gives the displacement, δu, at 
the point at which the point load P acts 

δ
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Since the total gap, δ, between the two opposing point forces is equal to twice δu then  

δ δ
π

= =2
3 3

u

R P
EI

 

as required. 
 To determine the value of P required to produce a total gap of δ=10mm we 
can re-arrange the above expression for P with I=w4/12, where w=2.5mm is the width 
of the square section 

P
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Inspection of the expression for bending moment M we observe that M obtains a 
maximum at θ=180° (position perpendicular to the applied forces P, as expected) and 
is equal to Mmax=2RP=2x45x10-3x95.5=8.595N. Thus, the maximum bending stress 
is, (5.30) 
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which is less in magnitude than the tensile yield stress of σY=300MPa. 
 
9.7 From the given beam deflection equation the maximum static deflection, δst, 
occurring at x=L is 

δ st
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g
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The impact factor F is, (9.89) 

F
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x
x
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Therefore, the maximum displacement, δmax, due to the impact of the falling mass is 
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Chapter 10 Solutions 
 
10.1 Refer to §10.2. 
 
10.2 Refer to §10.3. 
 
10.3 Refer to §10.4. 
 
10.4 To determine the slope at the free end of the cantilever beam then we can apply a 
virtual unit couple moment 1Nm at the free end of the beam, as shown in Figure 
Sol10.4. The virtual bending moment, Mv, is 

M x Lv = ≤ ≤1 0       
with the bending moment due to the applied load P 
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An analogous equation to (10.36) can be written for the angle of rotation, θ 
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In the present example we have 
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Figure Sol10.4. A cantilever beam with a virtual unit couple moment applied at the 
free end. 
 
10.5 With a virtual unit load applied at the free end, Figure Sol10.5, then the 
associated bending moment is 

( )M R Rv = − − sinθ  
whereas the bending moment due to the real applied point force P is 

M PR= − cosθ  
Thus, from (10.36) the horizontal deflection, δ, is 
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Figure Sol10.5. A quarter circle beam subject to a concentrated force P and virtual 
unit force at the free end. 
 
10.6 To determine the vertical deflection at the free end of the beam we add a virtual 
unit load at the free end, see Figure Sol10.6. For the virtual unit load the bending 
moment is 

M x xv = ≤ ≤      0 7  
For the real applied loading 
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From (10.36) we have 
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Re-arranging for δ we have 
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Figure Sol10.6. A cantilever beam subject to real concentrated loads of 10kN and 
20kN and a virtual concentrated unit load at the free end of the beam. 
 
10.7 To determine the deflection at the free end of the beam we apply a unit virtual 
point force at this point. With x measured from the free end of the beam then for the 
virtual unit load the virtual bending moment, Mv, is 

M x x av = ≤ ≤     0 3  
For the real applied loading system we have the following bending moments, M 

M x a

M W x a a x a

M W x a W x a a x a

= ≤ ≤
= − ≤ ≤
= − + − ≤ ≤

0 0

2

2 2 3

     

     

     

( )

( ) ( )

 

From (10.36) the displacement, δ, at the free end is 

[ ]EI W x a xdx W x a W x a xdx
a

a

a

a

δ = − + − + −∫∫ ( ) ( ) ( )2
2

32

 

with no integral in the interval 0≤x≤a because M=0. Performing the integrations we 
find the desired solution 

δ =
6 3Wa

EI
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Chapter 11 Solutions 
 
11.1 From (11.27) we have 

( )
( )

( )
( )

( )
( )

σ σθθ −
=

+

−
+

−

−










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

=
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
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


rr

r
p
r

b r
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b r
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1

1
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2
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Differentiating the radial stress with respect to r we have 

( )
( ) ( )

( )
∂σ
∂

rr

r
p

b a
b r

p
r

b r

b a
= −

−
− =

−











/

/
/

/
2

2 3

2

2
1

2
2

1
 

which is equivalent to the above equation and therefore satisfies the equilibrium 
equation (11.3). 
 
11.2 With a=75mm, b=250mm and p=75MPa then from (11.27) the radial and 
circumferential stresses on the inner surface, r=75mm, are 

( )
( )

( )
( )

( )
( )

( )
( )

σ

σ θθ

rr p
b r
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b r

b a
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
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Assuming closed ends then from (11.33) the axial stress is 

( ) ( )
σ zz

p

b a
=

−
=

−
=

/ /
.2 2

1

75

250 75 1
7 4MPa  

 
11.3 With a=0.5m, b=1m, pi=5MPa, po=100kPa=0.1MPa then the constants A and B 
in (11.20) are 

( )
( )

( )
( )

( )
( )

( )
( )

A
b a p p

b a

B
b p p
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o i
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−
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=
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=
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=
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/ .
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2 6 6

2
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2 6 6

2
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1 05 01 10 5 10

1 1 05
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x x x
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x x
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From (11.21) the radial and circumferential stresses at the radius r=0.75m are 

σ

σ θθ

rr A
B
r

A
B
r

= − = − == −

= + = + =

2
6

6

2

2
6

6

2

153 10
163 10

0 75
137

153 10
163 10

0 75
4 44

. & . &

.
.

. & . &

.
.

x
x

MPa

x
x

MPa

 

From (11.23) the axial stress is 

( )
( )

( )
( )

σ zz
o ip b a p

b a
=

−

−
=

−

−
=

/

/

. / .

/ .
. &

2

2

2

2
1

01 1 05 5

1 1 0 5
153MPa  

 
11.4 Consider the first vessel with the boundary conditions 

σ
σ

rr

rr

r

r

= − =
= =

45 75

0 100

MPa  at  mm

  at  mm
 

From Lame’s equations, (11.16), we find the constants A and B to be given by 
A B= =586 10 578 6 106 3. .x    ,    x  
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For the inner surface, in which σθθ will be maximum, then the circumferential stress is 

( )
σ θθ = + = + =

−
A

B
r 2

6
6

3 257 86 10
578 6 10

75 10
160 72.

.
.x

x

x
MPa  

For a safety factor of 2 then the maximum allowable cylindrical stress for the second 
cylindrical pressure vessel will be 160.72/2=80.36MPa. 
 For the second pressure vessel then our boundary condition (σrr=0 at the inner 
surface) combined with the maximum design circumferential stress give the two 
simultaneous equations, (11.16) 

( )

( )

σ

σ

θθ = + ⇒ = +

= − ⇒ = −
+

−

− −

A
B
r

A
B

A
B
r

A
B

i

rr

'
'

. '
'

'
'

'
'

2
6

3 2

2 3 3 2

80 36 10
75 10

0
75 10 50 10

      x
x

      
x x

 

noting the two new constants A´ and B´. Solving for A´ and B´ we have 
A B' . ' .= =2127 10 332 34 106 3x    ,    x  

Re-arranging the radial stress component of Lame’s equations (11.16) for applied 
internal pressure p then we have at the inner surface, r=75mm 

( )
p A

B
r

x
x

x
= − −





= − −














= =
−

'
'

.
.

.2
6

3

3 22127 10
332 34 10

75 10
37 8 378MPa bar  

Thus, the maximum safe working pressure for the second pressure vessel is 378bar. 
 
11.5 We first need to determine the interference pressure, p, so that the maximum 
stress (σθθ) at the sleeve-collar interface does not exceed 300x106. Therefore, from 
Lame's equations 

( )
( )

( )
( )

σ σθθ R A
B

R A
B

ci rr co= = + = = −
− −

300 10
49 5 10

0
100 10

6

3 2 3 2x
x

   ,    
x.

 

Solving for A and B we find 
A B= =59 10 59 106 4x    ,    x  

The radial stress at r=Rci is 

( )
σ rr ci

ci

R A
B

R
( )

.
= − = − = −

−2
6

4

3 259 10
59 10

49 5 10
182x

x

x
MPa  

Therefore, the interference pressure is 182MPa. 
From (11.40) the radial compression on the shaft is 

( ) ( )u
pR
Es

s= − − = − − = −
−

−1
182 10 10

210 10
1 0 3 30 3 10

6 3

9
6ν

x x
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x m
(50 )

. .&  

From (11.44) the radial expansion of the collar is 
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R
E

pR
R R

R
Rc

ci ci

co ci

co

ci

=
−









 − + +





















=
−









 − + + 

















=
− −

− −
−

2

2 2

2

3

9

6 3 2

3 2 3 2

2
6

1 1

49 5 10
210 10

182 10 49 5 10
100 10 49 5 10

1 0 2 1 0 3
100
49 5

85 10

ν ν

. ( . )
( ) ( . )

. ( . )
.

x
x

x x
x x

x m

 

Therefore, the total radial interference is, (11.45) 
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δ = + = −u uc s 1153 10 6.&x m  
 
11.6 Let the inner and outer cylinders be denoted by vessels 1 and 2 as in §11.10. 
From (11.52), (11.51), (11.48) and (11.27) the total radial interference is given by 

( ) ( )[ ] ( )( ) ( )( )[ ]δ σ νσ σ νσ ν νθθ θθ= − = − − − = − − + + −u u
b
E Eb

b A A B Brr rr2 1 2 2 1 1
2

2 1 2 1

1
1 1, , , ,

where 

( )
( )( )
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pb a c
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a b c b
b A A2 1

2 2 2

2 2 2 2 2 1

4 2 2

2 2 2 2
2

2 1− =
−

− −
− =

−

− −
= −   ,     

Substituting (A2-A1) and (B2-B1) into δ we finally arrive at 
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−
=

−

− −

b A A

E
pb
E

a c

a b c b
2 1

3 2 2
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Re-arranging for p then the interference pressure is 

( )( )
( )

( )
( )

( )( )
( )p

E
b

a b c b

a c
=

− −

−
=

− −

−













=
−

−

−δ
3

2 2 2 2

2 2

9 6

3 3

2 2 2 2

2 2

6
210 10 100 10

75 10

50 75 100 75

50 100
10 91

x x

x
x MPa

 
11.7 From (11.72) with p=100MPa, a=100mm, b=175mm and r=100mm then the 
circumferential stress is 
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σ θθ =
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−
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Chapter 12 Solutions 
 
12.1 Letting the total strain, ε, be the sum of the elastic, εe, and plastic, εp, strains and 
with εp=εe/5 then ε is  

ε ε ε ε
ε ε

= + = + =e p e
e e

5

6

5
 

From Hooke's law εe=σe/E and at the point of yielding then σe=σY and the total strain 
is 

ε
σ

=
6

5
Y

E
 

Substituting this total strain into the constitutive equation 

σ
σ

Y
YE

E
= 



200

6
5

1 5/

 

Solving for σY then we arrive at  

σ Y E
E

= =−139 10
719

3. x  

 
12.2 From (12.9) the mean yield stress, σm, is 

σ
ε

σ ε
ε

σ ε
σ

ε σ
ε σε

m Y Y
Y

Y
Yd B

E
d B

E
= = + −
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
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

∫ ∫

1 1
20

 

 
12.3 To determine the empirical constants C and n of Ludwik's power law from the 
given engineering stress and strain data then we require relations (12.11) and (12.14) 
which relate the true and engineering components, that is 

( ) ( )
( ) ( )

σ σ

ε

= + = + =

= + = + =
0 0

0

1 340 1 0 3 442

1 1 0 3 0 2624

e

e

.

ln ln . .

MPa
 

Inserting these into the Ludwik power law, (12.1), we have 

( )442 0 2624= C
n

.  

At the point of plastic instability we know from (12.15) that σ=dσ/dε, or from 
Example 12.2 that σ=Cnn and ε=n for Ludwik's power law. Therefore, n=ε=0.2624 
and upon substitution into the previous equation and solving for C we have 

( )442 0 2624 627 9
0 2624= ⇒ =C C. .

.
       

 
12.4 The maximum bending stress, σ, and shear stress, τmax, for the circular cross-
section bar are, (5.30) and (3.11) 

( )
σ

π
τ

π
= = = = = =

My
I

M d

I
M

d
TR
J

Td
J

T
d

/
max

2 32
2

16
3 3   ,     

and substituting into (12.61) 

32
3

16
3

2

3

2
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d Yπ π
σ


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+ 
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
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=  

Substituting M=cT and dividing by τmax we arrive at the required result 
σ
τ

Y c
max

= +3 4 2  
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12.5 Tresca's yield criterion is given by (12.29) with the difference in principal 
stresses obtained from (12.31). Therefore, the yield stress is 

( ) ( ) ( )σ σ σ τY xx yy xy= − + = − + =
2 2 2 2

4 500 100 4 100 447MPa  

To determine the value of the yield stress according to the Huber-von Mises yield 
criterion we will first evaluate the principal stresses, (12.30) 

σ
σ σ σ σ
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From (12.46) the yield stress is 

( )( )σ σ σ σ σY = − + = − + =1
2

1 2 2
2 2 2523 523 76 76 489MPa  

 
12.6 From (12.66) the total torque, T, consisting of the elastic torque, TE, and plastic 
torque, TP, is 

( )T T T kR
R

RE P
p= + = −
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5 3523
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6 3 3
3

π πx x x kNm.

with R=50/2=25mm and Rp=25-9=16mm. At first yield Rp=R and the torque is equal 
to 

T kRY = =
π
2

4 2953 . kNm  

and when the entire section is fully plastic then Rp=0 and the torque is equal to 

T kRFP = =
2
3

5 7273π . kNm  

 
12.7 From (12.90) the applied bending moment, MY, at first yield is 
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M

bh
Y

Y= = =
− −2 2 2 2 6
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From (12.96) the value of applied moment, M, to cause the plasticity to extend to a 
depth of 1cm is 
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For the plasticity to spread throughout the entire cross-section then y0=0 at which 
point the bending moment is 

M
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Y= =


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Chapter 13 Solutions 
 
13.1 At the nodes i and j we have, (13.23) 

φ α α φ α αi i j jx x= + = +1 2 1 2   ,     

Solving for α1 and α2 we find 

α
φ φ

α
φ φ

1 2=
−

=
−i j j i j ix x

L L
   ,     

and substituting into the interpolation function (13.23) then φ is 

( )
φ

φ φ φ φ
φ φ φ φ=

−
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−
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x x
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x x
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L
N N  

where Ni and Nj are the shape functions of the element and have the following 
properties: 
 
• Ni=1 at x=xi and Ni=0 at x=xj. 
• Nj=1 at x=xj and Nj=0 at x=xi. 
• The sum of Ni and Nj is always equal to unity for x within the range xi≤x≤xj. 
• The shape functions are of the same order as the interpolation function. 
 
With xi=2 and xj=6 then the L=xj-xi=4. With φi=10 at xi=2 and φj=20 at xj=6 then from 
the above interpolation function at x=3 we have Ni=3/4 and Nj=1/4 with φ=12.5. The 
value of φ at x=3 is seen to be a linear interpolation of the nodal values. 
 
13.2 From (13.33) the D matrix for plane stress is 
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and from (13.36) the D matrix for plane strain is 
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From (13.32) the stress vector for plane stress is 
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and similarly for plane strain 
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13.3 The cross-sectional areas of elements 1 and 2 are 

A
D

A
D

1
1
2 2

2
2

2
2 2

2

4
80
4

5 027
4

50
4

1 964= = = = = =
π π π π

, ,mm    ,    mm  

The element stiffness matrices are, (13.44) 



 42

[ ] ( )
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The structure stiffness matrix and force vector are, using node ordering (1,2,3) 
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Incorporating the boundary condition u1=0 then the structure system of equations to 
be solved for U is  
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where R1 is the reaction at node 1. Performing row multiplications we have 
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Solving these equations we find u1=0, u2=-0.092mm and u3=-0.6415mm. Both u2 and 
u3 are negative and u3<u2 as expected. An additional check illustrates that R1 is equal 
and opposite to the applied force of -185kN. From (13.30) the element strains are 

( ) ( )

( ) ( )

ε

ε

xx

xx

L
u u

L
u u

1
1 2

6

2
2 3

6

1 1
500

0 0 092 184 10

1 1
700

0 092 0 6415 785 10

= − + = − = −

= − + = − = −

−

−

.

. .

x

x
 

From (13.32) the element stresses are 
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and are found to agree exactly with the theoretical estimates 
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13.4 The stiffness matrices of elements 1 and 2 are, (13.81) 
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Inserting into the global stiffness matrix we find the structure system of equations 
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with node ordering 1, 2 and 3. Multiplying rows 3 and 4 we find 
0 25 0

346 41 10 15 1000
2

6
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. ( . )

u
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= −x
 

leading to u2=0 and v2=-1.9245x10-6m; with u2=0 due to symmetry. Similarly, the 
axial strain, stress and force components in elements 1 and 2 are equivalent and so we 
will consider only element 1. The axial strain is, from (13.83) 
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The axial stress and force are 
σ ε σ1 1 1 10 2887 577 32= = = =E F A. .MPa   ,    N  

 From the free-body diagram in Figure 13.28 we observe that 2Tcos30°=1kN 
and therefore T=577.35N which agrees exactly with the finite element prediction. The 
displacement v2 is found by an application of Castigliano’s second theorem as in 
Exercise 9.4 

v
Pd

EA2 3
6

2
19245 10= − = − −

cos
.

ϑ
x m  

which, again, is exact agreement with the finite element estimate. 
 
13.5 The cross-sectional area, A, and perimeter, P, for both elements are 25x10-6m2 
and 20x10-3m respectively. Letting elements 1 and 2 have nodes (1,2) and (2,3) 
respectively then the stiffness matrix for element 1 has contributions due to 
conduction and perimeter convection, (13.118) 
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with the force vector due to {Fh} only, (13.119) 
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Element 2 is identical to element 1 except that it also experiences end-convection 
through node 2 so that the stiffness matrix of element 3 is, (13.118) 
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Similarly, adding the end-convection term to the force vector of element 2 we have 
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Assembling the element contributions into the structure stiffness matrix and force 
vector we find 
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with node ordering 1 to 3. We have a prescribed temperature of 100oC at node 1 
which results in a non-homogeneous boundary condition. The stiffness matrix and 
force vector are modified by first setting all non-diagonal terms in the first row and 
column of the stiffness matrix to zero. Also, the term (-4.9167)x100oC=-491.67 on the 
left hand side of the second equation is transposed to the right hand side as +491.67. 
The resulting systems of equations is now given by 
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The second through to third equations are now solved in the usual manner, with the 
solution vector given by {T}={100,86.87,82.34}.  
 
13.6 All three elements experience no perimeter convection (P=0) with element 3 
experiencing convection at node 4. Assuming a unit cross-sectional area for all three 
elements then the stiffness matrix and force vector for element 1 are, (13.118) and 
(13.119) 
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and similarly for element 2 
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Element 3 consists of an additional end-convection term 
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Assembling the elements into the structure stiffness matrix and force vector gives, 
with node ordering 1 to 4 
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Incorporating the prescribed boundary condition T1=25oC then the system of 
equations is modified as follows 
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where the right hand side of the first equation is set to 25oC. The term (-0.1)x25oC=-
2.5 on the left hand side of the second equation is transposed to the right hand side as 
+2.5. Solution of the system of equations yields {T}={25,15,5,-5}. From Fourier's law 
the heat flux for an element of length L and nodes i and j is 
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Evaluation of qx for all three elements reveals that the heat flux is constant and equal 
to Qx=qxA=qx=1 for all three elements. 
 
13.7 The stiffness matrices for all three elements are equivalent and given by (13.136) 
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Since there are no sources or sinks and no applied surface flow rates then both Q and 
q are equal to zero in (13.138) so that the element force vectors are 
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Assembling the element components we have the following structure system of 
equations for unknown fluid heads p1, …, p4 
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Incorporating the non-homogeneous boundary conditions of p1=0.2m and p4=0.1m in 
a similar manner to that discussed in Example 13.4 we arrive at 
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Solving the second and third equations for p2 and p3 then the solution vector is 
{P}={0.2,0.16,0.13,0.2}. From (13.130) the element velocity for an element of length 
L with nodes i and j is 
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For example, for element 1 we have 
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with equivalent velocities for elements 2 and 3. 
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Chapter 14 Solutions 
 
14.1 From §1.11 the in-plane strains are 
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Differentiating the strains 
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Upon substituting these into the compatibility equation, (14.21), we observe that u 
and v are compatible. 
 
14.2 Differentiating φ we find 
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Thus, we observe that φ satisfies ∇4φ=0 since all terms of φ are less than power 4. 
 The stresses follow immediately from the Airy stresses, (14.46) 
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It follows that φ provides a solution for a plate subject to uniform stresses along its 
sides of σxx=2C,  σyy=2A and τxy=-B. 
 From the Hookian equations for a state of plane stress, (14.42), the in-plane 
strains are 
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 Integrating the strains we find the displacements 
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where the functions f(y) and g(x) are determined from the boundary conditions. 
 
14.3 Let the resultant stress be S(Sx,Sy,Sz) with 

S S S Sx y z
2 2 2 2= + +  

This resultant stress consists of both normal, SN, and shear, SS, components 
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2 2 2= +  
If the direction cosines of ABC are l=cosα, m=cosβ and n=cosγ then 
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Substituting Sx, Sy and Sz into SN we have 
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Substituting σij and (l,m,n) into Sx, Sy and Sz we have 
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with S equal to 
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The normal and shear stresses are 
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The direction of SN acts normal to plane ABC and is therefore defined by 
(l,m,n)=(1/√3,1/√3,1/√3) with α=β=γ=cos-1(1/√3)=54.74°. A useful check is to ensure 
that l2+m2+n2=1 which is the case. The direction of SS acts parallel to the plane ABC 
and let it be defined by (ls,ms,ns) where ls=cosαs, ms=cosβs and ns=cosγs. The 
components (Sx,Sy,Sz) can now alternatively be defined as, resolving SN and SS 

S S S lS l S

S S S mS m S

S S S nS n S

x N S s N s S

y N S s N s S

z N S s N s S

= + = +
= + = +

= + = +

cos cos

cos cos

cos cos

α α
β β

γ γ

 

from which it follows 

( )

( )
( )

l S lS S

m S mS S

n S nS S

s x N S

s y N S

s z N S

= − = −

= − =

= − =

/

/

/

1

2

0

1

2
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confirming that l m ns s s
2 2 2 1+ + = . The angles αs, βs and γs are αs=cos-1(-1/√2)=135°, 

βs=cos-1(0)=90° and γs=cos-1(1/√2)=45°. Finally, we can check that the two direction 
vectors of SN and SS are orthogonal by ensuring that the dot product of (l,m,n) and 
(ls,ms,ns) is equal to zero, that is (1/√3,1/√3,1/√3).( -1/√2,0, 1/√2)=0. 
 
14.4 From (14.100) the C matrix is 

[ ] ( )( ) ( )
C =

+ −

−
−

−

















=
















210 10
1 0 3 1 2 0 3

1 0 3 0 3 0

0 3 1 0 3 0

0 0 1 2 0 3 2

404 10

0 7 0 3 0

0 3 0 7 0

0 0 0 4

9
9x

x
x

x
. .

. .

. .

. /

. .

. .

.

 

With [ε]T=[-19,64,3]x10-6 then the stress vector is 
σ
σ
τ

xx

yy

xy

















=
















−















=
















−404 10

19

64

3

10

2 38

158

0 48

9 6x

0.7 0.3 0

0.3 0.7 0

0 0 0.4

x MPa

.

.

.

 

 
14.5 From (14.190) the shear stresses τxz and τyz are 

[ ]τ
∂φ
∂

θ τ
∂φ
∂

θ
xz yzy

G y x
x

G
a

ax
x y= = − − = − = − +





1
3
2

2
3

2 2   ,     

The centroid of the triangle is at (x,y)=(0,0) and the three corners are at (2a/3,0), (-
a/3, a / 3 ) and (-a/3,- a / 3 ). Substituting these coordinates into τyz above we 
observe that τyz is equal to zero at the centroid and three corners. 
 
14.6 Since the hole in the plate is circular, a/b=1, then from (14.212) the stress 
concentration factor is Kt=3. The maximum of σP that can be applied to the plate is 
therefore 

σ
σ

P
Y

tK
(max) = = =

300
3

100
MPa

MPa  

From (14.210) the σyy stress at a distance x=a/2=6.25mm from the notch root (notch 
root radius of ρ=b2/a=a=12.5mm) is 

σ σ
ρ

ρyy P tK
x

=
+

=
+

=
4

100 10 3
12 5

12 5 4 6 25
1736x x MPa

.
. ( . )

 

 
14.7 From (7.19) the principal stresses are given by 

σ
σ σ σ σ

τ1 2

2

2

2 2, =
+






 ±

−





 +xx yy xx yy

xy  

With the stresses given by (14.223) for the semi-infinite Boussinesq wedge then the 
three main terms in the above expression are 

( )

( )

σ σ

π

σ σ

π

τ
π

xx yy

xx yy

xy

f
r

x xy

f
r

xy x

f
r

x y

+
= − +

−





 = 





−

= 





2

2

4

4
3 2

2

4

2
2 3 2

2
4

2
4 2
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Noting that the square root term reduces to 

( )σ σ
τ

π
xx yy

xy

f

r
x x y

−





 + = 





+
2

2

2
2

2
2 2 2  

and substituting into the principal stresses we finally arrive at the required result 

σ σ
π1 2 2

0
2

= = −   ,    
fx
r
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Chapter 15 Solutions 
 
15.1 Refer to §15.2 for a discussion on equivalent stress and strain. 
 
15.2 Refer to §15.2 for a discussion on the constancy of volume condition and its 
application to illustrate that Poission’s ratio is equal to ½ for incompressible 
materials. 
 
15.3 For a thin-walled pressure vessel with no shear stresses then the circumferential, 
axial and radial coordinate stresses σθθ(=pd/2t), σzz(=σθθ/2) and σrr are equivalent to 
the principal stresses σ1, σ2 and σ3; where p is the internal pressure, d is the mean 
diameter and t is the wall thickness. From (15.1) the equivalent stress is 

( )σ σ σ σ σ σθθ θθ θθ= − + + =
1

2

3
2

2 2 2
zz zz  

The equivalent plastic strain is given by (15.2) with the plastic strain increments d pε 1 , 

d pε 2  and d pε 3  determined from the Levy-Mises flow rule. The deviatoric component 
of σθθ is 

( )σ σ
σ σ σ

σ σ σθθ θθ
θθ

θθ
' = −

+ +





= − +





zz rr
zz rr3

2
3

1
2

 

The plastic strain increments are, from (15.22) 

( )

( )

( )

d d

d d

d d

p p
zz rr

p
zz
p

zz rr

p
rr
p

rr zz

ε ε
λ

σ σ σ
λ

σ

ε ε
λ

σ σ σ

ε ε
λ

σ σ σ
λ

σ

θθ θθ θθ

θθ

θθ θθ

1

2

3

2
3

1
2 2

2
3

1
2

0

2
3

1
2 2

= = − +





=

= = − +





=

= = − +





= −

 

with the equivalent plastic strain given by, (15.2) 

( ) ( ) ( )d d d d d d dp
p

zz
p

zz
p

rr
p p

rr
pε ε ε ε ε ε εθθ θθ= − + − + −

2
3

2 2 2
 

 
15.4 In the absence of shearing stresses, τrz, then the principal stresses are equal to the 
coordinate stresses σθθ, σrr and σzz. With the external pressure po=0 and the internal 
presure pi=p then we have from Lame's equations, (15.34) 

σ

σ

σ

θθ

rr

zz

p

p
k
k

k b a

= −

=
+
−







 =

=

2

2

1
1

0

   ;    

   (open ends)

/  

Let us examine both the Tresca and Huber-von Mises yield criteria starting with 
Tresca's criterion. 
 
Tresca's Yield Criterion 
 
Since the coordinate stresses are equivalent to the principal stresses, (15.33) 

σ σ σθθ − =rr Y  
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Substituting the radial and circumferential stresses we find that first yield occurs when 

p
k

Y= −





σ
2

1
1

2  

Re-arranging for k 

( )
( )

k
p

p
Y

Y

=
−











σ
σ

/

/

/

2

1 2

 

With p=100MPa and σY=250MPa then k=√5=2.24. 
 
Huber-von Mises Yield Criterion 
 
From the Huber-von Mises yield criterion 

( ) ( ) ( )σ σ σ σ σ σ σθθ θθrr zz zz rr Y− + − + − =
2 2 2 22  

With σzz=0 for open ends then this equation reduces to 
σ σ σ σ σθθ θθrr rr Y

2 2 2− + =  
Substituting the radial and circumferential stresses and re-arranging for p we arrive at 

p
k

k
Y=

−

+
σ

2

4

1

3 1
 

Re-arranging for k we arrive at the following quadratic equation with unknown k2 

[ ] ( )3 2 02 2 4 2 2 2 2p k k pY Y Y− + + − =σ σ σ  

Solving, then k is given by 

( )( )
k

p p

p

Y Y Y Y

Y

=
− ± − − −

−















σ σ σ σ

σ

2 4 2 2 2 2

2 2

1 2

3

3

/

 

With p=100MPa and σY=250MPa then the two solutions of k are k=0.69 and k=1.83. 
Since k>1 then k=1.83 and is approximately 22% less than the Tresca prediction and 
results in approximately 70% difference in cross-sectional area. 
 
15.5 The required applied internal pressure, p, to produce an elastic-plastic boundary 
to a depth of c=70mm can be found by setting r=a and p=-σrr in (15.40) 

p
c
a

c
brr Y= − = 





+ − 





























= 





+ − 





























=σ σ ln ln .
1
2

1 300
70
50

1
2

1
70

100
177 45

2 2

MPa  

The fully plastic condition is reached when c=b and the required pressure, pY, is 

p
b
aY Y= 





= 





=σ ln ln .300
100
50

207 94MPa  

 
15.6 From the material power law 

( )d
d

nC
P

P nσ
ε

ε=
−1

 

and upon substitution into the plastic instability condition (15.48) we have 

( ) ( )nC C
nP n P n Pε σ ε ε

−
= = ⇒ = =

1
3 3

3
0 26      .  

From (15.49) the mean radius and wall thickness at the point of plastic instability are 
( )r r e e t t e e

P P

= = = = = =− −
0

3 2 3 0 26 2
0

3 2 3 0 26 20 45 056 1 0 8ε ε/ . / / ( . )/. . .m  ,   mm  
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15.7 From Exercise 15.6 the equivalent plastic strain remains the same. From (15.57) 
the mean radius and wall thickness at the point of plastic instability are 

r r e e t t e e
P P

= = = = = =− −
0

2 0 26 2
0

2 0 26 20 45 051 1 088ε ε/ . / / . /. . .m  ,   mm  



 54

Chapter 16 Solutions 
 
16.1 From (16.5) and (16.6) the constants a, b and c and area A are 

a b c

a b c

a b c

A

i i i

j j j

k k k

= = − = −
= − = = −

= − = − =
=

8 2 1

2 3 1

1 1 2

2 5

  ,     ,   

  ,     ,   

  ,     ,   

.

 

From (16.8) the shape functions at point p are 

N N Ni j k= = =
1
5

1
5

3
5

  ,     ,    

From (16.11) the displacement vector at point p is 

u

v

N N N

N N N

u

v

u

v

u

v

i j k

i j k

i

i

j

j

k

k









=






































=

=






































=








0 0 0

0 0 0

1 5 0 1 5 0 3 5 0

0 1 5 0 1 5 0 3 5

1

1

3

4

2

2

2

2 2

/ / /

/ / / .

 

 
16.2 Denoting nodes (1,2,3) by (i,j,k) to assist in the use of the required formulae then 
from (16.5) and (16.6) the constants a, b and c and area A are 

a b c

a b c

a b c

A

i i i

j j j

k k k

= = − = −
= − = = −

= − = =
=

9 2 1

3 2 1

2 0 2

2

  ,     ,   

  ,     ,   

  ,     ,   
 

From (16.8) the shape functions are 

[ ] [ ] [ ]N x y N x y N yi j k= − − = − + − = − +
1
4

9 2
1
4

3 2
1
4

2 2  ,     ,    

From (16.11) the [N] matrix is 

[ ]N
N N N

N N N
i j k

i j k

=










0 0 0

0 0 0
 

From (16.17) the [B] matrix is 

[ ]B =
−

− −
− − −

















1
4

2 0 2 0 0 0

0 1 0 1 0 2

1 2 1 2 2 0

 

From (13.33) the [D] matrix is 
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[ ]D x=
















219 10

1 0 3 0

0 3 1 0

0 0 0 35

3

.

.

.

N / mm2  

From (16.17) the strain vector is 

{ } [ ]{ }ε
ε
ε
γ

=

















= =
−

− −
− − −













































=
















−
xx

yy

xy

B U
1
4

2 0 2 0 0 0

0 1 0 1 0 2

1 2 1 2 2 0

1

1

2

3

4

5

10 3

0.5

1.5

2.25

x  

From (16.18) the stress vector is 

{ } [ ]{ }σ
σ
σ
τ

ε=

















= =
































=
















−
xx

yy

xy

D x220 10 103 3

1 0.3 0

0.3 1 0

0 0 0.35

0.5

1.5

2.25

x

209

363

173.25

N / mm2  

 
16.3 With xi=3, yi=3, xj=4, yj=1, xk=5 and yk=3 then the constants a, b and c and the 
area, A, of the element are 

a b c

a b c

a b c

A

i i i

j j j

k k k

= = − =

= = = −

= − = =

− − −

− −

− − −

7 10 2 10 1 10

6 10 0 2 10

9 10 2 10 1 10

6 2 3 3

6 2 3

6 2 3 3

x m    ,    x m   ,    x m

x m    ,    m   ,    x m

x m    ,    x m   ,    x m

= 2x10 m-6 2

 

From (16.17) the [B] matrix is 

[ ]B
A

b b b

c c c

c b c b c b

i j k

i j k

i i j j k k

=

















=
−

−
−

















1
2

0 0 0

0 0 0 250

2 0 2 0

1 0 2 0 1

1 2 2 0 1 2

0 0

0  

and from (13.33) the [D] matrix is 

[ ]D
E

=
−

−

















=
















1

1 0

1 0

0 0 1 2

21978 102
11

ν

ν
ν

ν( ) /

. x

1 0.3 0

0.3 1 0

0 0 0.35

 

The stiffness matrix is, (16.34) 

[ ] [ ] [ ][ ]K B D B tA= =

=

−

−
−









































−
−

−

















− −

T

( x

1

1

0.35

( x )( x250

2 0 1

0 1 2

0 0 2

0 2 0

2 0 1

0 1 2

21978 10

0 3 0

0 3 0

0 0

250

2 0 0 0 2 0

0 1 0 2 0 1

1 2 2 0 1 2

2 10 2 1011 3 6. )

.

. )

Performing the multiplications we find 
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[ ]K =
−

− − − −
− − − −

























54945 10

01 2 4

0 7 14 14

12 2 0 4

4 35 01 0 7 12 4 35

13 0 4 0 4 2 13 2 4

7.

. .

. . .

.

. . . . .

. . . . .

x

4.35

sym.
 

noting that the matrix is symmetric (Kij=Kji), the principal terms are all positive and 
non-zero (Kii>0) and the sum of all terms in either a row or column are zero 

( Kijj
=

=∑ 0
1

6
). 

 To determine the force vector we require just the contribution due to the edge 
pressure. From (16.42) the normal pressure term for edge (i,k) is 

{ } { }F F
L t

p

p

p

p

pressure
ik

x

y

x

y

= =































=

−

−





























2

0

0

0

200

0

0

0

200

 

 
16.4 Measuring the length coordinate ξ from node 1 then ξ=3/4 for point p. From 
(16.60) the shape functions are 

N

N

N

1
2

2

2
2

2

3
2

2

2 2 1 2
3
4

2
3
4

1
1
8

2 2
3
4

3
4

3
8

4 4 4
3
4

4
3
4

3
4

= − + = 





− 





+ = −

= − = 





− =

= − = 





− 





=

ξ ξ

ξ ξ

ξ ξ

 

The displacement u at point p is, (16.59) 

u N u N u N u= + + = −





+ 





+ 





=1 1 2 2 3 3

1
8

2
3
8

2 25
3
4

2 55 2 51. . .  

 
16.5 To determine the element shape functions (16.84) we first require the area 
coordinates of point p. From (16.6) we find 

A A A A= = = =
5
2

1
2

1
2

3
21 2 3  ,     ,     ,    

From (16.43) the area coordinates of p are 

ξ ξ ξ1
1

2
2

3
31

5
1
5

3
5

= = = = = =
A

A

A

A

A

A
  ,     ,    

confirming that ξ3=1-ξ1-ξ2. Substituting ξ1, ξ2 and ξ3 into (16.84) 
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( )

( )

( )

N

N

N

N

N

N

1 1 1

2 2 2

3 3 3

4 1 2

5 2 3

4 1 3

2 1 2
1
5

1
1
5

3
25

2 1 2
1
5

1
1
5

3
25

2 1 2
3
5

1
1
5

3
25

4 4
1
5

1
5

4
25

4 4
1
5

3
5

12
25

4 4
1
5

3
5

12
25

= − = −





= −

= − = −





= −

= − = −





=

= = ⋅ =

= = ⋅ =

= = ⋅ =

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

 

confirming that ΣNi=1. The displacement (u,v) at point p is 

u

v

N N

N N

u

v

u

v









=




































=








1 6

1 6

1

1

6

6

0 0

0 0

315

38

L

L
M

.

.
 

16.6 From (16.60) the element shape functions are 
N N N1

2
2

2
3

22 3 1 2 4 4= − + = − = −ξ ξ ξ ξ ξ ξ  ,     ,    
so that the derivatives with respect to ξ are 

∂
∂ξ

ξ
∂
∂ξ

ξ
∂
∂ξ

ξ
N N N1 2 34 3 4 1 4 8= − = − = −  ,     ,    

From (16.70) the Jacobian matrix is 

[ ] ( ) ( ) ( )J
x N

x
N

x
N

x= = + + = − + − + − =
∂
∂ξ

∂
∂ξ

∂
∂ξ

∂
∂ξ

ξ ξ ξ1
1

2
2

3
3 4 3 1 4 1 5 4 8 3 4  

 
16.7 From (16.53) 

( ) ( )I x dA f J d d A w fy A i
i

n

= = =∫∫ ∫ ∑∫
=

2
1 2 1 2

0

1

1 2
10

1

2ξ ξ ξ ξ ξ ξ, ,  

noting that |J|=2A. With reference to Table 16.2 the x coordinate at the three 
integration points a, b and c are 

x x

x x

x x

a i
a

i
i

b i
b

i
i

c i
c

i
i

= = 





+ 





+ 





=

= = 





+ 





+ 





=

= = 





+ 





+ 





=

=

=

=

∑

∑

∑

ξ

ξ

ξ

1

3

1

3

1

3

0
1
6

3
1
6

0
2
3

1
2

0
2
3

3
1
6

0
1
6

1
2

0
1
6

3
2
3

0
1
6

2

 

With A=6 and wi=1/6 for all three integration points then Iy is 

I y = 





+ 





+











=2 6

1
6

1
2

1
6

1
2

1
6

2 9
2 2

2x  
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An exact evaluation of Iy can be performed by referring to Example 2.1. Considering 
an elemental strip dy at a distance y from the x-axis then 

y h
hx
b

= −  

With dA=ydx then Iy is 

( )I x dA x ydx x h
hx
b

dx
h
b

bx x dx
hb

y A

b b b
= = = −





= − =∫∫ ∫ ∫ ∫2 2

0

2

0

2 3

0

3

12
 

With b=3 and h=4 then Iy=4(3)3/12=9 which agrees exactly with the evaluation of Iy 
using Gaussian integration. 
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Chapter 17 Solutions 
 
17.1 Refer to §17.2 for a discussion of the stress intensity factor, §17.3 for a 
discussion of the T-stress and §17.5 for a discussion of several well-known stress 
intensity and T-stress expressions. 
 
17.2 For a symmetrically cracked circular hole in a plate with far-field uniform 
loading consider the two limits of a→0 and a→∞ in the given expression. For a→0 
we have 

R
R a

K aI+






→ →
2 4

1 3365
.

.   and   σ π  

and for the limit a→∞ we have 

R
R a

K aI+






→ →
2 4

0
.

   and   σ π  

Thus, as the cracks grow beyond the influence of the circular hole then KI tends to the 
case of a centrally cracked plate. 
 The case of a→0 requires further analysis. When a crack is short (a<<R) then 
the crack is approximately equivalent to an edge crack in a semi-infinite plate but with 
the applied stress modified by the circular hole stress concentration factor of 3σ. In 
this case KI is given by 

( )K a aI = =11215 3 33645. .σ π σ π  

which is essentially equivalent to the given equation by letting a→0. Similarly, for the 
T-stress as a→0 we have 

( )T = − = −05258 3 15774. .σ σ  
 
17.3 Refer to §17.8 for a discussion of plane strain fracture toughness and its 
experimental determination. 
 
17.4 The total crack length is 2a=25mm so that a=12.5mm. Neglecting finite plate 
effects with Y=1 then for case i) we have 

( )K aIC f= = =− −σ π π220 12 5 10 43 63 3 2. . /x MNm  

For case ii) with α=1/π for Irwin's model then from (17.91) KIC is 

K aIC f
f

Y

= +




















= −σ π απ
σ
σ

1 491
2

3 2. /MNm  

The discrepancy between the elastic and plasticity correction estimates increases as 
σf/σY increases although the small-scale yielding assumption becomes increasingly 
invalid. 
 
17.5 The rotor rotational speed in radians per second is 

ω
π

= 





=12 10
2
60

1 2573x radians / second,  

At the critical crack length then KI=KIC and a=acritical 
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( ) ( ) ( )

K Y
R

a

a

IC critical

critical

=
−
−







⇒ =
−

−










ρ
ω ν

ν
π

π

2 2

6 3
2 2

8
3 2
1

85 10 055 8 10
1 257 0 35

8

3 2 0 33

1 0 33
  x x.

, . .

.

 

Solving for acritical we have 
acritical = 16 7. mm  

Comparing KI with ∆ ∆K Y a= σ π  then we observe that the cyclic stress is 

( ) ( )
∆σ ρ

ω ν
ν

=
−
−







=
−

−








 =

2 2
3

2 2

6

8
3 2
1

8 10
1 257 0 35

8

3 2 0 33

1 0 33
6755 10

R
x x MPa

, . .

.
.  

Since when operating the rotational speed is constant then the only way in which the 
stress cycles is from the starting-stopping of the rotor. Using this assumption then ∆N 
will provide us with the number of times that the rotor can be run up to speed. From 
(17.159) the number of cycles is 

( ) ( )

∆
∆

N
C Y

a a

mm m m

i
m

f
m

=
−

−













=

=
−







 =

− −

−

− −

1
2 1

1

411 10 6755 055

0 012 0 017
05

250

2

1 2 1 2

11 3 3 2 3

1 3 2 1 3 2

σ π

π

/

/ /

/

/ /

/

. . .

. .
.x

 cycles

 

 
17.6 Refer to §17.11 for a discussion on long and short fatigue cracks. From Hobson’s 
growth law (17.164) with α=0 and re-arranging for the number of cycles we have 

( )[ ]∆N
C

da
d a C

d a
a

a

a

a

i

f

i

f=
−

= − −∫
1 1

ln  

With ∆σ=638MPa then C is found to be 

( )C
C

= = =− −164 10 638 2 887 10
1

34634 1114 3. .
.

x x    ;     

With the long crack condition ∆Kth=6MPa√m and Y=2/π then from ∆ ∆K Y a= σ π  
the total threshold crack length is 

( )

( )
a

K

Y
m m dth

th= =






= = ≡−2
2 6

2
638

138 10 138
2

2 2

2

2
2

6∆
∆π σ

π
π

µx  

With ai=10µm and af=84% of d which is equal to 116µm then the number of cycles is 
( ) ( )[ ]∆N = − − − − =346 138 116 138 10 609ln ln  cycles  

 
17.7 For plane strain conditions then (κ+1)/8µ=(1-ν2)/E=1/E′. Therefore, from 
(17.183) the mode I stress intensity factor is 

( )K E JI = = =' . .231 10 2 4 10 23559 3x x MPa m  
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Chapter 18 Solutions 
 
18.1 Refer to sections 18.1 to 18.8. 
 
18.2 From (18.7) and taking logarithms we have 

ln & ln lnε σs A n= +  
From a ln &ε s  versus lnσ plot with two 1 (σ=100MPa) and 2 (σ=200MPa) then the 
slope is 

( ) ( )
n s s=

−
−

=
−

−
=

− −
ln & ln &

ln ln

ln . ln .

ln ln
.

ε ε
σ σ

2 1

2 1

4 67 6 10 4 4 10

200 100
7 4328

x x
 

Assuming n to be an integer and equal to 7 then the constant A is, (18.7) 

A s
n

= = =
−

−& .
.

ε
σ

4 4 10
100

4 4 10
6

7
20x

x  

in which the first test point has been used. 
 
18.3 From (18.10) and taking logarithms we have 

ln & lnε s D
Q
RT

= −  

From a ln &ε s  versus 1/T plot with two points 1 (T=160K) and 2 (T=200K) then the 
slope is 

( ) ( )
− =

−
−

=
−

−
= −

− −
Q
R T T

s sln & ln &

/ /

ln . ln .

/ /
,

ε ε2 1

2 1

3 6

1 1

819 10 7 24 10

1 200 1 160
5 625

x x
 

from which Q is found to be 
Q = =198 5 625 11. ,x kcal / mol  

Finally, solving for D at T=160K we have 

( ) ( )
ln ln & ln .

.
.D

Q
RT

Ds= + = + ⇒ =−ε 7 24 10
11 10

198 160
8 7 106

3
9x

x
      x  

 
18.4 For the equivalents strains in the two tests then 

t e t eQ RT Q RT
1 2

1 2− −=/ /  
Taking logarithms we have 

( )ln ( / ) ln /t Q RT t Q RT1 1 2 2+ − = + −  
and re-arranging for Q we arrive at the required result 

[ ]Q
RT T

T T
t t=

−
−1 2

2 1
1 2ln ln  

 
18.5 Re-arranging (18.29) for t/tf we have 

t
t

A
Af

n

= −






 = − 





=1 1
3
4

0 5781
0

3

.  

 
18.6 From (18.43) the skeletal radius is 

( ) ( )
r

J
J

n R

nRsk
c

n n

n n

n n

=






 =

+







 =

+







 =

−

+

−

+

−/ ( )

( )/

/ ( )

( )/

/( )1 4

1 3

1 4

1 3 4 4

4 4 1
1 3

4

1 3 4 50

4 4 50
38

x

x x
mm

x
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18.7 The elastic second moment of area for the rectangular beam is 

( )
I

b h
= = =

2

12
50 75

12
1 757 812

3 3
4x

mm, ,  

The creep second moment of area is, (18.47) 

I
bn

n
hc

n n=
+

=
+







=+
+

2
2 1

2 50 5
2 5 1

75
2

131 9612 1
2 5 1 5

( )/
( )/

,
x x
x

x

 

Thus, the skeletal depth is given by, (18.52) 

y
I
Isk

c

n n

=






 = 





=
− −/( ) / ( )

, ,
,

.
1 5 5 1

1 757 812
131 961

2545mm 
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Chapter 19 Solutions 
 
19.1 From (19.6) the strain after 100s using the Maxwell model is 

ε
µ

σ= +






 = +





= −t
E
1 100

1000 10
1

0 3 10
5 10 517 100 6 9

3 6

x x
x x

.
 

and according to the Voigt model, (9.16) 

( ) [ ]( )ε
σµ= − = − − =− −1 1 100 10 100 10 10

5 10
100 10

32 100 3 6
3

3
6e

E
Et / exp /x x x

x
x

x  

 
19.2 The total strain, ε, is the sum of the strains due to the Maxwell, εm, and Voigt, εv, 
models from (19.6) and (19.16) 

( )ε ε ε
µ

σ
σµ= + = +







 + − −

m v
m m

E t

v

t
E

e
E

v v
1

10
0/  

At t=0 the instantaneous elastic strain is ε=σ0/Em. Differentiating ε with respect to 
time then the steady creep rate is 

& /ε
σ
µ

µ
µ

µ= +










−0 1
m

m

v

E te v v  

As t→∞ then & /ε σ µ→ 0 m . The variation of ε against t is shown in Figure Sol19.2. 
Clearly, when µm=0 then the model is equivalent to the standard linear solid model. 
 

1

σ µ
0 m
/

t

ε

σ
0 m
/E

((E +E )/E E )
m v m v 0

σ

 
Figure Sol19.2. Creep response for the model of Exercise 19.2. 
 
19.3 From the solution of Exercise 19.2 the strain is given by 

( )ε ε ε
µ

σ
σµ= + = +







 + − −

m v
m m

E t

v

t
E

e
E

v v
1

10
0/  

After the removal of stress σ0 at time t=τ then the elastic strain σ0/E is instantaneously 
recovered followed by the recovery strain of, from (19.6) and (19.22) 

( )ε
σ
µ

σ τ µ µ= + − − −0 0 1
t

E
e e

m v

E E tv v v v
' / ' /  

As t→∞ then ε→σ0t′/µm. The strain-time curve is illustrated in Figure Sol19.3. 
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t

ε

σ
0 m

/E

σ
0 m
/E

σ µ
0 m
t /’

((E +E )/E E )
m v m v 0

σ

τ  
Figure Sol19.3. Strain-time curve for the model of Exercise 19.2 with removal of 
stress σ0 at time t=τ. 
 
19.4 From (9.33) the relaxation stress at time t=10s is 

( ) [ ]σ 10
08 10 10 10

08 0 2 10
0 2 10 08 10 08 0 2 10 10 5 10 2 466

9 6

9
9 9 9 9s =

+
+ − + =

−. ( )
( . . )

. . exp[ ( . . ) / .
x x

x
x x x x x kPa

 
 
19.5 From (19.6) and (19.10) the creep compliance, C(t), and relaxation modulus, 
G(t), for the Maxwell model are 

C t
t

E
G t Ee Et( ) ( ) /= + = −

µ
µ1

   ,     

and from (19.16) the creep compliance function for the Voigt model is 

C t
e
E

Et

( )
/

=
− −1 µ

 

with G(t)=0. 
 
19.6 Following a similar procedure as used in the derivation of (19.6) then the total 
strain rate is 

& & & &ε ε ε σ σ= + = +s d
n

E
A

1
 

For constant stress σ=σ0 then 
&ε σ ε σ= = +A A Bn n

0 0   or    
where B is a constant of integration. If at time t=0 the instantaneous elastic strain is 
σ0/E then B=σ0/E and ε is given by 

ε
σ

σ= +0

E
A to

n  

 
19.7 From (19.42) the strain at time t=3500s is 

ε ( ) . . )( )

. . )( )

. ( . x )( )

. )( ) .

.

.

.

3500 0 5 10 152 10 3500

0 25 10 152 10 3500 1000

0 25 10 152 10 3500 2000

1 10 152 10 3500 3000 115 10

6 9 0 15

6 9 0 15

6 9 0 15

6 9 3

= +

− +

− −

− =

−

−

−

− −

x ( x

x ( x

x

x x( x x
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Chapter 20 Solutions 
 
20.1 Refer to §20.2 for a summary of different types of damage. 
 
20.2 From (20.1) the damage parameter is 

ω = = =
A
A0

826
1 018

081
,

.  

 
20.3 From (20.2) the continuity parameter is 

ψ ω= − = − =1 1 081 019. .  
20.4 From (20.2) and (20.9) 

ω ψ= − = − = − =1 1 1
67

190
0 65

E
E

'
.  

 
20.5 From (20.15) 

( )σ 0 1− = + =n
f fA n t Bt  

Letting m=-n and taking natural logarithms we have 
ln ln lnt m Bf = −σ 0  

From a (lnσ0, lntf) plot then m is given by, using the first and last data points 

m n m=
−
−

= − = − =
ln . ln .

ln ln
. .

217 97 11
14 10

1332 13 32   ;     

and with B given by 

( ) ( )ln ln ln . ln ln . .B n t f= − + = − + = −σ 0 13 32 14 2 17 359269  

from which B is found 
( )B = − = −exp . .35 9269 2 5 10 16x  

The constant A now follows 

A
B

n
=

+
=

+
=

−
−

1
2 5 10
1332 1

175 10
16

17.
.

.
x

x  

 
20.6 From (20.17) ψ is given by 

( )ψ = − =+
1 08 08937

1 13 32 1
. .

/( . )
 

and ω is equal to ω=1-ψ=1-0.8937=0.1063. 
 
20.7 From (20.30) λ is 

λ
ε

σ
= f

n
fA t

 

At the start of tertiary creep t=0 and ω=0 then from (20.23) 
&ε σs

nA=  
Substituting &ε s  then λ is given by 

λ
ε

ε
= f

s ft&
 

as required. 
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Chapter 21 Solutions 
 
21.1 From (21.1) and (21.3) the maximum volume fractions (r=R) for square and 
hexagonal fibre configurations are 

V sq
r
R

V hex
r
R

f

f

,max

,max

( ) .

( ) .

= 





= ≈

= 





= ≈

π π

π π

4 4
0 785

2 3 2 3
0 907

2

2
 

From (21.13) and (21.18) E|| and E⊥ for the square and hexagonal configurations at 
Vf,max are found to be 

E hex V

E sq V
n
n

E hex V

E sq V
n
n

f

f

f

f

|| ,max

|| ,max

,max

,max

( , )

( , )
. .
. .

( , )

( , )
. .
. .

=
+
+

=
+
+

⊥

⊥

0 907 0 093
0 785 0 215

0 215 0 785
0 093 0 907

  ,    

where n=Em/Ef. For example, when n=0.1 then E||(hex,Vf,max)/E||(sq,Vf,max)=1.14 and 
E⊥(hex,Vf,max)/E⊥(sq,Vf,max)=1.6. 
 
21.2 From the rule of mixtures (21.13) 

( ) ( ) ( )E E V E Vf f m f|| . . .= + − = + − =1 76 0 45 4 1 0 45 36 4GPa  

 
21.3 From (21.19) 

( ) ( ) ( )
E

E E

E V E E
f m

f f m f

⊥ =
− +

=
− +

=
1

76 4
76 1 0 45 4 0 45

6 97
x

GPa
. .

.  

 
21.4 With E1=E||=36.4GPa from Exercise 21.2 and E2=E⊥=6.97GPa from Exercise 
21.3 then E , G  and ν  from (21.34) are 

( ) ( )

( ) ( )

( )

E E E

G E E

= + = + =

= + = + =

− = − =

⊥

⊥

3
8

5
8

3
8

36 4
5
8

6 97 18

1
8

1
4

1
8

36 4
1
4

6 97 6 29

1
18

2 6 29
1 0 43

||

||

. .

. . .

.
.

GPa

GPa

=
E

2G
ν

 

 
21.5 From (21.38) the volume fraction at cross-over between low and high Vf is 

V f
m

f f m

'
*

* ' * , ,
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21.6 From (21.43) the transverse failure strength, σ ⊥

* , is 
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21.7 From (21.45) the critical embedded fibre length is 
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Chapter 22 Solutions 
 
22.1 Resolving Pr we find that P=Prsinθ and Q=Prcosθ and upon substitution into 
(22.7) and (22.18) and superimposing the stresses gives the stresses in the half-plane. 
 
22.2 The stresses for a point force at x=b can be found by replacing x by (x-b) in 
(22.7) 
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To show that τxy is zero along the line x=b/2 write expressions for τxy when P is at x=0 
and x=b, from (22.7) and the above equation 
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which cancel if superimposed. 
 
22.3 Referring to Figure 22.26 then the applied pressure distribution is given by 
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Performing the integrations in (22.20) then the stresses are found to be 
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where r, r1, r2, θ, θ1 and θ2 are given by 
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22.4 For a uniform pressure (N=P and T=0) then Φ(z) and Ψ(z) are 
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With reference to Figure Sol22.4 then let z-t=re-iθ where r=|z-t|. From (14.148) and 
(14.152) the stress components are 
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Solving for σxx, σyy and τxy we arrive at 
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Figure Sol22.4. A half-plane subject to a uniform normal pressure. 
 
22.5 From (22.55) the pressure beneath the centre of the punch is 
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22.6 From (22.70) the radius of the contact radius, a, and total displacement, δ, are 
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Letting body 2 be the half-plane, R1=∞, and R=R2 then R1R2/(R1+R2) is found to 
reduce to the following 
 

( )
R R

R R

R R

R R R
R R R1 2

1 2

1 2

1 2 1
2 11+

=
+

= = → ∞
/

   as    

In addition, letting E=E1=E2 and ν=ν1=ν2 for both bodies having the same elastic 
properties then the above expressions for a and δ are found to reduce to 
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as required. 
 
22.7 We can obtain expressions for a, δ and p0 for the circular ball in a circular seat 
from (22.70) by simply making R1 negative. 
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Chapter 23 Solutions 
 
23.1 Table Sol23.1 summarises the failure strengths of the tested composite material. 
 
failure strength ab. frequency rel. frequency cum. Ab. frequency cum.  rel. frequency 
650 1 0.1 1 0.1 
680 2 0.2 3 0.3 
700 2 0.2 5 0.5 
710 3 0.3 8 0.8 
740 1 0.1 9 0.9 
750 1 0.1 10 1 
Table Sol23.1. Sample of 10 values of the tensile failure strength (MPa) of glass-
polyester unidirectional laminae composite specimens. 
 
23.2 From (23.4) the mean is 
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From (23.5) the variance is 
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and the standard deviation is the square root of the variance 
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23.3 Since a thrown die can result in a number which is both even and a multiple of 3 
then both events can occur simultaneously and therefore the events are arbitrary. 
Letting A represent an even number and B represent a number which is a multiple of 3 
then A={2,4,6} and B={3,6}. The required probabilities for arbitrary events are 
P(A)=3/6=1/2, P(B)=2/6=1/3 and P(A∩B)=1/6 so that from (23.13) we have 
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23.4 From (23.28) the mean is 
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From (23.30) the variance is 
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23.5 For case i) then x =1 and σ2=1 so that we can obtain the probability directly 
from Table 23.2, and is found to 0.9772. For case ii) with x =0.4 and σ2=4 then the 
standardised variable is 
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From Table 23.2 we have Φ(0.8)=0.7881. 
 
23.6 From (23.53) and Table 23.3 the mean strength is 
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23.7 Letting the specimen of Exercise 23.6 be denoted by specimen 1 and the new 
specimen by 2 then from (23.65) the expected mean strength of the new specimen is, 
with σ 1 =718MPa 
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