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Chapter 1 Solutions

1.1 The cross-sectional area, A, of thebar is
A=p(50x10°?)" = 785x10"*m?
The axial stress, s, dueto the axial load P=30kN is

3
_P_ 30" _seompa
A 785x10°
1.2 From (1.6) the axid strain, €, is
6
= S = % =182x10°°
E 210x10

From (1.3) the axia extension, d, is
d = el =18.2x10 °x05=91x10"°m

1.3 From (1.16) the in-plane strains are
1 1
eXX—E[sXX-nsW] : eW—E[sW-nsxx]

Re-arranging the first equation for S
S « = E€, tns

and substituting into the second equation then syy is found to be

_E _ 70x10° 6
S w m[ew +nexx] —W[GO"' 028X40]X10 =54MPa
Substituting Syy into e, and re-arranging for s

_ 70x10°

E .
S = m[exx +neyy] W[40+ 028X60]X10 6= 4.3MPa

1.4 From (1.23) the bulk modulusis
]
K = E _ 210x10° _ 175GPa
31- 2n) 3(1- 2x03

1.5 With E=s/e, s=P/A, e=d/L and d=a(DT) then P is given by
EAa(DT) _ 120x10°x7.1x10 *x11x10 °(100)

L 0.75
illustrating that a compressive axial load of 125kN is required to cancel out the
extension due to thermal expansion.

P= =125kN

1.6 The compressive stresses of each bar are

3
S e = P _ 150x10 = Z6MPa
A:opper P (25X10 3)
3
S .= P _ 150x10 — 3AMPa

Awa  p(375x10°)°
The contractions of each bar are



PL B 150x10°x05

oy = — 5 = _=318x10°m
Ecopper A;opper 120X109 Xp (25X10 3)
3
g = Plaw o 1800006 o6

B A 200x10°xp (375x10°%)°
The total contraction of the composite bar is d=0opper+0kea=420x10°m.

1.7 From (1.31,1.32,1.36) the in-plane strains e, &,y and g,y are given by

en =g =g (e mmsy) o ey =gi=g(s,ns.)
laqu | Tvo



Chapter 2 Solutions

2.1 Figure Sol2.1 illustrates a circle of radius R with an elemental strip of thickness dy
at distance y from the x-axis. The area, dA, of the elementa strip is therefore

dA = 2xdy = 2,/ R? - y*dy

The area of the strip istherefore given by, (2.1)
+R
A=qpA=20/R - y'dy
-R

The integration is assisted by making the substitution y=Rsing, dy=Rcosqdq

p/2 p/2,

12
: 61 0 &  sn2y
A=4R ros* dJ = 4R? (- (1+cos2) ) = 4R S+ "= pR?
g i e A
The first moment of area Qx is, (2.2)
+R +R
N N N 2 3/2 +R
Q = (YdA= 03/(2\/R2- yzdy):20y\/R2- y’dy =- §’(R2_ yz) ) =0
-R -R ’

Similarly, it is found that Q,=0. Therefore, as expected the coordinates of the centroid
are x.=Qy/A=0 and y:=Q,/A=0.

=

2X

A

v

Figure Sol2.1. A circle of radius R and elemental strip dy.

2.2 The derivation of the area, first moments of area and centroid are analogous to
those outlined in Exercise 2.1 except that the range of integration is now [0:R]. Thus,

the area of the semicircleis
\p/2

R p/2 - : 2
- N N & ,sn2ly pR
A= YA =20/R - y’dy=2R* ¢yos’Jd] =2R° 5+ .=

ay o\/0 y*dy ?: & 2 0 -2
The first moment of area Qx is, using the elemental strip dy shown in Figure Sol2.1




R
2 a]R  2R?
= GeYA = 20y R? - y3d :-—’RZ- 2 ==
Q.= @pA=20WR - vy SR )| =
The y-coordinate of the centroid is therefore
~Q, _2rR/3_ 4R

The first moment of area Qy is, using the elemental strip dx shown in Figure Sol2.1 in
which dA=ydx

=0

+R 1 32 +R
= wdA = AW R? - x2d :-—’RZ- 2
@(d _(gx\/ X“dx 3( x)

-R

and hence x:=Q,/A=0.

2.3 Figure Sol12.3 illustrates an ellipse with elemental strip of length 2x and width dy.
The area A of the dlipse is therefore, noting that the equation of an ellipse is

Xl +yPIb*=1
A\ — 2
A= Q}iA 002xdy 2a0D 1- o7 dy b OD*/b y*dy
Using the standard indefinite integral

2
< a” . 1
a’?- x?dx=—sin 1aex—9+2x\/a - x?

2 ag
then the areais found to be

b
2aeb 1380 2 24
A=—a—sSn ¢ =+ b*-y°g =
b &2 &bp 2y a7
2aiépb® ., U0 é&* . U 2aépb® pb*u
=—ja9n(Yg- azsn(-Ygy=—@a—+——=pab
b&2 ()H a2 ( ):% bg4a 4H

The second moment of area Iy is, with dA=2xdy

LN 2N X _¥% 5 y2 PR y2
=@V dA=Qy 2xdy=0Q v 2al- de—ZaQDy 1- de
Using the standard indefinite integral
2 & [-al
~ 2x/ax2+cdx:11/ a+c) - Xa+c- —5 _sntox [-2s . a<o
0" 4a ( ) 8a 8a/- a g \c g
then Iy is
i 2 2 g4 3
y aﬁi yo / y 1 . ,%® 1/b°97  _pab
I, —2a - = - sin : =
% ( /bz) 8(1/b2) b? (-8/b2)«/1/b2 y 1 Eséb 4
Similarly, it can be shown that |,=pa’b/4.




Figure Sol2.3. An dllipse with half major and minor axes a and b.

2.4 The centroidal cordinates for rectangles 1 and 2 are (Xc1,Ya1)=(27.5,2.5) and
(Xe2,Ye2)=(2.5,25). The areas of rectangles 1 and 2 are A;=225mm? and A;=250mm?®
with the total cross-sectional area equal to A=A;+A,=475mm?. From (2.2) and (2.3)
Qy and x; are

Qy = é. XCi A = XclAl + XCZAZ = 6’812mm3 ’ XC = Q_'Ay = 1434mm
and similarly with Qx and y. given by
Qx = é. yci A = yclAl + yczAz = 6,812mm3 , yC e Q—AX = 1434mm

with =y, and Qx=Qy due to the symmetry of the bracket about the (x,y) axes.
From (2.5) and (2.6) the second moments of area of rectangles 1 and 2 are
given by, with respect to the centroidal axes

3 3
I xcl — % = 468mm4 , | yel — % = 37,968mm4

3 3
= S(ig) =52,083mm* |, | . = 50(5) =520mm*

xc2 yc2 12

Use of the paralel-axis theorem (2.8) and (2.9) for rectangle 1 gives I and I, with
respect to axes (X,y)

Lo =l + AYa =1875mm* | 1, =1, + Ax} = 208125mm’*
and similarly for rectangle 2
lo = Lo + AYS, =208333mm* , 1, =1, + AXxS, =2,083mm*

Findly, Iy and |, are given by
| =1,+1,=210208mm* , | =1

, =y +1, =210,208mm*
with 1,=ly as expected.

2.5 From (2.10) with dA=bdy then I,y is given by

h/2

o L L éy? V.
Iy = CQXydA_bXQ],Zydy_bXé?U =0
€< W

and is seen to be equal to zero due to the symmetry about the coordinate axes.

2.6 From (2.13) the polar second moment of areafor the ellipse of Exercise 2.3 is



3 3
Ip:|X+|y:pab+pab:pab(az+b2)
4

4 4

2.7 From (2.15) the radii of gyration ry and ry for the ellipse of Exercise 2.3 are

r:\/E:/pab3/4:9 r:\/E:/pa3b/4:E
“ VA pab 2 A pab 2




Chapter 3 Solutions

3.1 From (3.12) the maximum shear stressis given by
(= 16T _ 16(10x10%)

"™ pD® p(50x10'3)3:407'\/“361

3.2 From (3.1) the polar moment of area, J, is

s p(s0x10°3)’
3=PD" _ p( )
32
and from (3.11) the angle of twist is
TL _ 10x10°x125

q=— = -
GJ 80x109(6136x10

=6136x10°m*

) = 255x10 *radians = 015°

3.3 From Example 3.1 then the maximum shear stress occurs at the smallest diameter
of d;=50mm

16T _ 16(12x10°)

t = = 489MPa
pd; p (50x10‘3)3

max

and the angle of twist is
g=_ 32T €1 10
PG(d, - d,) &7 d7y
) 32(12x10°)x1 g 1 1
3px80X10°(75x10°* - 50x10°) §(50x10°)"  (75x10°?)

ey end

U= 01147radians= 657°

w
o

3.4 From (3.16) the mean shear stressis
T 100

m— 2 = > =163MPa
PRt 2p(3125x10°%) (01x10°?)
3.5 Re-arranging (3.16) for wall-thickness t
T 15x10° — 23mm

‘- 20R% 2p (40x10°°)*(65x10°)

3.6 From (3.1) and (3.2) the polar moments of area of the inner solid bar, Ja, and
outer tube, Jg, are

_3 4

_pr: _ p(125007)
2 2

Pt pe\_P

B~ E(RB - RA) - E

From (3.21) the angle of twist is

= 383x10 °m*

Ja

(25x10'3)4 ; (12.5x10'3)4] = 575x10"" m



_ TL ~ 5x10°(0.75)
G,Ju +GgJy  45x10°(383x10°° ) + 30x10°(575x10°7

q

) =0J1976radians=11324°

3.7 From (3.20) the torques in the inner solid bar, Ta, and outer tube, Tg, are

5 & 46x10°(383x10°® 0
_® GJ, o _¢ ( ) +5x10° = 454Nm

Ta= SGAJA +GyJp @ ) §46x10° (3.83x10‘8) +30x10° (5_75)(10-7)5

5. @ 30x10°(5.75x10°’ 0
T, de Geds O _¢ g _8( 9) —75x10° = 455kNm
GuJu+GeJso  §46x10°(383x10°°) +30x10°(575x107" ) 5
and from (3.22) the corresponding maximum shear stresses are
TR, _ 454(125x10°)

t e = = —— =148MPa
' J, 383x10
455x10°%(25x10°3
thaszBRBz ( — ):198MPa
' Jg 5.75x10



Chapter 4 Solutions

4.1 From (4.2) and (4.4) the principal stressesin the pipe are

3
s, = pr_ 50x6.895x10°x08 ~184MPa , s, = S

L =92MPa
t 15x10°3

2

4.2 From the Hookian equations (1.16) we have
1 1
ezz_E[Szz'nSqq : eqq_E[Sqq'nS ZZ]

Solving these for the in-plane stresses then we have
] - 70X10

S, = W[eﬂ T 07429+ 0X1821Jx10° = 75MPa

ne,] = 70X10 o 1821+ 03x429]x10°° = 150MPa

_E
Sqg = 1- n2 [e
The maximum in-plane shear stress |s, (4.7)
_S,-S,_S,-S, _ (150- 75x10°

qq

tmax_
2 2

= 375MPa

4.3 With the pressure p equal to rgh and sq=S2 not exceeding the maximum
allowable stress s410v=300MPa/S where §=10) is the safety factor then from (4.11)
we find the maximum permissible depth of water to be

2ts,,,  2(25x10°°)300x10°
rogrS 1000x9.81x1x10

=153m

4.4 From (4.5) and (4.12) the circumferential strains for the cylinder, e;, and hemi-
spherical end caps, e, are

e. —ﬂgﬁ- no - e, :i(l- n)
Et. 29 2Et,
where E and n denote Young's modulus and Poisson’s ratio respectively, p is the
internal pressure, r is the radius of the vessel and t. and ts are the wall thicknesses of
the cylinder and hemi-spherical ends respectively. Equivalence of the circumferential
strains e; and e; yields
_g@-no

S %2 _ n b C
and with te=1mm then ts=0.4mm.

4.5 From (4.9) the absolute maximum shear is equd to

t max :h =S 2= E
2 2t
The cylinder pressure, p, is
P_P
A pr?

where P is the force acting on the piston and r is the piston radius. Substituting p into
t max then



t = t_ = i

™S 2prt

where tv is the yield stress in pure shear and S is the safety factor. Re-arranging for
the cylinder wall thicknesst

P 2(50x10%)

t= =
2prt ., 2p(40x10 %)150x10°

= 2.65mm

4.6 Re-arranging (4.11) for internal pressure p with syrs denoting the ultimate tensile
stress then

_ 25 et _ 2X737x10°(10°°)

= =227MPa
P r 65x10°3

4.7 From (4.19) Iy and |, are given by
I, =1, =pr’t =px25°x1=49,087mm*

10



Chapter 5 Solutions

5.1 From the equations of equilibrium the two unknown reactions Ra and Rg are found
AF'=0: Ry+Ry-30(2)-40=0 P R, +R; =100kN

AM=0: Ry(7)- 60(4)- 408)=0 P R, =80kN and\ R, =20kN

The shear force, Vi, and bending moment, My, for the four intervals i) 0<x<3, ii)
3<x<5, i) 5<x<7 and iv) 7<x<8 are:

i)

0<x<3
V, =R, = 20kN
M, = Ryx=20xkNm
3<x<5
V, =R, - 30(x- 3) =20- 30(x- 3)kN
2 2
M, = RyX- 30@ = 20x - 3o@kl\|m
o<X<7
V, =R, - 60=-20kN
M, = RyXx- 60(x- 4) =20x- 60(x- 4)kNm
7<x<8

V, =R, + Ry - 60 = 40kN

M, = R\X+ Rg(x- 7)- 6(x- 4) =20x+80(x- 7)- 6(x- 4kNm

with Vyx and My illustrated in Figure Sol5.1.

11
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20+
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Figure Sol5.1. Shear force and bending moment diagrams for the smply supported
beam of Exercise 5.1.

5.2 From the equations of equilibrium the two unknown reactions are
RA: 5 _———2 =125kN

Taking moments at an arbitrary cut at a distance x from the left hand end
Wx>  WLx  Wx®

2 2 2
Differentiating My with respect to x and setting dM,/dx=0 we find that the maximum
bending moment occurs at x=L/2. Substituting x=L/2 into My then the maximum
bending moment is given by

MXX+WX§-RAXZO b M, =Rx-

2 32
M :\NL :5X10X5

™8 8
For the rectangular section the second moment of areais given by, Example 2.3

=15,625Nm

12



_ (50x10°%)(75x10°%)’

12
From (5.30) the maximum tensile and compressve stresses occur at
y=1h/2=+37.5mm

=17578x10"°m"*

15,625 37.5x10°°

C o Mu(n/2) | 1562437540°)
e | 17578x10°°

5.3 From Example 5.2 the shear force, Vi, a a distance x from the left hand end of the

beamis

= +333MPa

V, :ng—‘ - X2
2 9
and attains maximum and minimum values at x=0 and x=L respectively
3
V. = % = %’ =125kN , V. =-V.__ =-125kN

From the beam shear formula (5.40) and the rectangular cross-section examined in
Example 5.4 then the maximum shear stress at a given section is

V h?
t max
8l
and occurs at the neutral axis of the beam. Substituting Vimax and Vimin We have

12.5x103(75x10'3)2

8(17578x10'6)

and are seen to be considerably less than the maximum tensile and compressive
bending stresses of Exercise 5.2.

t n = = +5MPa

max,min

5.4 From the equations of equilibrium the two unknown reactions Ra and Rg are found
A F'=0: R, +Ry :%

aM=o: RBL-%(??—LQ—OD RB—% P R—%

where the centre of gravity of the dlstrlbuted load acts at x=2L/3. From the equations
of equilibrium for the free body diagram of Figure Sol5.4 the bending moment is
given by

W? ax © _WLx W

M=0: M, + X 80 py-0 p M, =X WX
a oL &35 A 6 6L

13
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A i
[ ERR
RA v
Wi /2L

Figure Sol5.4. Free body diagram for the beam of Figure 5.27 cut at a distance x from
support A.

Substituting the bending moment into (5.41) we have

3
EN':M_ W™
6 6L

I ntegrating with respect to x then the dope of the beamis
2 4
:VVLX ~ W rc,
12 24L
and integrating once more then the deflection is
WX Wi®
Elv= - +Cx+C
36 1200 *TC
The boundary condition v=0 at x=0 reveals that C,=0 and the boundary condition v=0
at x=L gives C;=-21WL%1080. Substituting C; and C; into the above expressions for v
and v¢and re-arranging we have
v=- WK (5 10122 +7L4)
360LEI
v=- W (7L4 - 30L°X? +15x4)
360LEl
The maximum deflection, dyax, Can be determined from the condition that the slope of
the beam will be horizontal at the point of maximum deflection, Xmax. Substituting
veé=0 in the above and re-arranging we have the following quadratic equation for
unknown x*

ElV

15x* - 30L%x%2 + 714 =0

& /4800
X2 =y V48052
S
which gives the two solutions x=1.3154L and x=0.5193L. Since xEL then the
maximum deflection occurs a Xmnux=0.5193L. Finally, substituting Xmax into v we
arrive at dmax

Solving for

4
O = - V(0.5193L) = o.ooe‘>52V\E—’LI

5.5 From the equations of equilibrium for the entire beam
Ro+R,- Mg WL3L oo
2 2 4
we find that the reactions Ra and Rg are given by

14



3L WL

M BTy

As noted in Example 5.8, when using Macaulay's method, if a distributed load does
not extend to the right hand end of the beam then we need to extend and
counterbalance the distributed load to the right hand end of the beam. The bending

moment at a cut x-x (L/2<x<L) is, Figure 5.27b)

M, +vvxg- R,x- W{x- L/2}

x-L12 _,
2

_ 3Mx  W{X- L/2}? wWx?
8 2 2
Substituting My into the flexure formula (5.41)
AWLX | W{X- L/ W&
2 2

P M,

Elv'=

and integrating twice

3WLX? L W{x- L/2}° W’ N
16 6 6
_Awmx® L W{x- L/Z" wx

24 2

From the two boundary conditions v=0 at x=0 and x=L we find that the constants of
integration C; and C; are

Elv'= C,

Elv +Cx+GC,

owm®
384

and upon substitution into v we arrive at the following expression for the deflection of
the entire beam

C =- , C,=0

WLx® L WM{x- L/2* Wx* 9’

24 24 384
Macaulay's method informs us that a term in curly brackets is ignored if it is either
zero or negative. Therefore, when xEL/2 we have

Elv =

v:-ﬂ(16x3-24|_x2+9|_3) ; 0£ xE L
384El 2

5.6 The beam of Figure 5.28 has three unknown reactions (Ra, Rs and M,) but only
two independent equations equilibrium can be written and as a result the beam is
statically indeterminate to the first degree. Let reaction Rg be the redundant reaction.
From the equations of equilibrium

R,+R,-WL=0 b R,=WL- R,

2
MA+RBL-VVL%:O b M, =k

- RyL

The bending moment at an arbitrary cut x-x is
Wi?

MXX+MA+V\/X§-RAX:O b M,=Rx-M,-

Substituting Ra and Ma into My and using the flexure formula (5.41) we have

WL2 W2

EIV'=WLX- RyX- +RL- =

Performing two integrations we have

15



WLx?  Ryx® WL?X Wi

Elv'= - + R Lx- +C,
2 2 6
3 3 2,2 2 4
EIV:WLX _ Rgx® WL X +RBLX _ Wk +CX+C,
6 6 4 2 24

Applying the boundary conditions V=0 at x=0 and v=0 at x=0 we find that C;=0 and
C,=0. Applying the boundary condition v=0 at x=L gives the redundant reaction

RB = ﬂ
8
The unknown reactions Ry and Ma are now given by
SAL WL
RA =— N

8
Substituting R, C; and C; into v and collecting terms then the deflection for the beam
isgiven by
2
vV=- WX (3L2 +2x°% - 5Lx)
48El

5.7 The beam has three unknown reactions (Ra, Rs and Ma) but only two independent
equations of equilibrium and is therefore staticaly indeterminate to the first degree.
Letting Rs be the redundant reaction then from the equations of equilibrium

2
R,=WL-R, , M, :W;‘
Using the method of superposition we now proceed to apply the distributed load W to
the released beam, Figure Sol5.7b), and the redundant reaction Ra to the released
beam, Figure Sol5.7c). Since the deflection of the original beam is zero a end B then
we have the following compatibility equation
dg =dg - dg, =0
The force-displacement relations give the deflections dg; and dg>

- RyL

4. = wL* R
ogEl T % 3E

which upon substituting into the compatibility equation gives

WL Ry

d g = — - ——=

8El 3El
and solving for Rg

RB = ﬂ

8
The remaining reactions Rx and Ma are found from the above equilibrium equations
_ 5\ w2
RA T e ! AT

8

16
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Figure Sol5.7. Propped cantilever beam of Exercise 5.7. a) The propped cantilever
beam subject to a uniformly distributed load. b) The released beam with redundant
reaction Rs and load W applied. ¢) The released beam with Rg applied.

17



Chapter 6 Solutions

6.1 With I=pd"/64 for a solid circular cross-section of diameter d and substituting |
into (6.10) and re-arranging for d we have
aBAP, 126 _ aB4x200x10°x4% 6"

d:g p’E o g p°3x210x10° @

=75mm

6.2 The second moments of area with respect to centroidal coordinates (x,y) for the
square, circle and equilateral triangle shown in Figure Sol6.2 are

2
square: | =1, =1 _ b , A=Db* | rZ:I—zé»O.OSBA
12 A 12
2
circle: I:IXX:IW:Ab , A=pb® , 2=l = A 0o797A
4 A 4p
2
equilateral triangle: | =1, =1 :Ab , A:ﬁb2 , rZ:I—: A » 00722 A
¥ 36 4 A 8J3
From (6.14) s isgiven by
_pEr?
Scr_ Lz

with s¢ seen to be proportional to r%. Therefore, the struts from largest to smallest s
are the square, circular and equilateral triangle cross-sections.

y y

b b
Figure So0l6.2. Square, circle and equilateral triangle.

6.3 With reference to Figure Sol6.3 the second moments of area Ix and |y are, (2.5)
and (2.6)

| = @)y'dA= 4facosq)’(tds) = 4(‘9')/2(acosq)2(tadq) =pa’t
|, = @)CdA= 4¢fasing)’(tds) = 46/2(asinq)2(tadq) =pa’t
with Ix=ly due to symmetry. The area of the section is

A= @pA=4¢yds= 4(‘5/2t(adq) = 2pat
Finally, theradius of gyration is, (6.12)

S
A \2pat 42

18



dq\,

\q X

Figure S0l6.3. One quadrant of a circular tubular cross-section.

6.4 From the equations of equilibrium the compressive load acting on the strut is
equal to GBW. The cross-sectional area and second moment of area of the strut are
A= (50x10°%)" = 25x10°m?

| = i(50x10'3)(50x10'3)3 = 52083x10° " m*
12

From (6.12) the radius of gyrationis

-7
r:\ﬁ: 5208310  00144m
A 2.5x10°

The strut is built-in at one end and pin-jointed at the other end where the load W acts
so that from (6.42) the effective length of the strut is Le=0.7L=1.75m and the critical
buckling load is, (6.31)

p =P EA _ p?x210x10°x25x10°°
Tk /) (175/00144)*
Thus, the strut will fail due to buckling when W exceeds 351kN.

= 351kN

6.5 The area and second moment of area of the rectangular tube are
A=(02x01) - (018x0.08) = 56x10"°m?

| = 1—12[0.2X0.13 - 0.18X0.083] =8.986x10 °m*

From (6.32) the critical buckling load is

2 2 9 -6
P = 4p"El _4p x210x10° x8.986x10 — 9933kN

L? 52
and the critical stressis

3
_ PR 9933107 _ oo iMpa

6.6 The stress and eccentricity ratio are
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P 350x10°

A 3270x10°

ey _eA _ 0025x3270x10°°
2 S 144x10°

The critical buckling load is, (6.10)

2 9 -6
P = pLIZEI p x210x1; x11x10 — 912kN

From (6.52) and (6.57) the maximum deflection and stress are

d= eesecg / —-lu 19.5mm

ou
S max :—él —secgp P+(|:215MPa
A@ r e2\| P, a2y

6.7 From Table 6.2 the constant a is equal to 1/7500 and the slendernessratio is
L 2
r 396x10°
Therefore, from (6.61) the critical stress according to the Rankine-Gordon formulais
Sy 300x10°

Sp=— Y= = 224MPa
1+al® |, 50505

7500

=107MPa

= 05677
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Chapter 7 Solutions
7.1 The sy stressis

~ A 1500x10°
From (7.8) and (7.12) the local direct and shear stresses on the cut plane ab are

S 4w =S XX%(l+c052J):s » C0S°J =-375MPa

Sy, =S XX%(1 cos2) ) = - 125MPa

t :-sxxisinZJ =-s ,SnJ cos) =2165MPa

Xy’

7.2 From the stress transformation equations we have
S . =195MPa , s . =105MPa , t . =50MPa
observing that the sum of the global and local stresses are equal, (7.13)
S tS, =S, +S
7.3 The centre C, point A, point B and radius R of Mohr’scircle are, see 87.5.1
_S . tSy, U
C=g= " ’08_ [- 25,0]

NI =0)=(s, ):(50-50)

B0 =90°)=(s,,-t,,)=(-10050)
R= \/? 28 %+t = 9014

Mohr’s circle can now be plotted and is shown in Figure Sol7.3.

B(q=90 ) N

x'y’

Figure Sol7.3. Mohr’ s circle for the stress element of Exercise 7.3.
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The principa stresses and associated planes are
s, =0C+R=-25+9014=6514

s,=0C- R=-25- 9014=-11514
2] , =180 - DACP, =180 - tan 1§‘—?9 14631 ; J,,=7316
39
2) ,=180+2) , ; J ,=16316" or - 1684
The maximum and minimum shear stresses and associated planes are
t o = R=9014

t . =-R=-9014
_ o 1880 _ . _ .
2) , =DPACS, =tan P 5631 ; J,=2815
20
21 ,=180"+2), ; J,=1181%
The stresses on the plane q=-45° are represented by points D and D¢on Mohr’s circle
shown in Figure Sol7.3. With angle b given by

b=2) - DACR =90 - tan 1%%: 90" - 3369° = 5631
S (D) =0C + Rcosb = - 25+ 9014 c0s56.31" = 25
t,,(D) = Rsinb = 9014sin5631' = 75

S,y =S (D) =0C- Rcosb =-25- 9014c0s56.31" = - 75

7.4 Mohr’s circle can be schematically constructed by positioning the centre, C, of the
circle and determining itsradius, R, as follows for the three requested cases:

a) Uniaxial (Sxx=S, Syy=tx,=0)

C=[s 0]
R=0
noting that Mohr’ s circle reduces to a point.

) Pure Shear (Sxx=Sy=0, tyy=t)

c=[00]
R=t
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Each of the above casesis correspondingly illustrated in Figure Sol7.4

o C[s/2,0] S, 0 C[s,0] S C[0,0]

s/2

—
—

i
a) b)

c)
Figure Sol7.4. Mohr’s circle for the cases of a) uniaxial, b) equi-biaxial and c) pure
shear loadings.

7.5 (1) With 14, 1, and g, given by

.2
'1'2:|X;|yiJ§dX2|yZ+'fy e, = |X21Xy|y
and since I=Iy then
L= 4+ _a@ 4.1 4(:)'r4:aa?p2+18p-128(':)'Ir4
1T Ty TR16 9p 8 b 44p o
=11, %1 gi ;+94;4 g@ 20,4
p 16 &
tan2) ;=¥ ; 2]

, , =90 ; J =45

(i1) With r=10mm then from the I, 1y and |,y expressions given
l, =1, =549mm*

and from the transformation equations

. ?;lz ?2 gcosZJ+I sn2) =1, ¥

, |y =-165mm’

5 SiN2J =692mm* and 406mm*

|y =1, €COS2] = - 825mm’

7.6 With g=30° then cos2q=1/2 and sin2g=08/2 and substituting Iy, Iy and Iy into

xy 8S required.
7.7 From (7.54) the shear modulus, G, for the dluminium alloy and steel are
= B, 70 _ 26GPa
2(1+n,) 2(1+033)
B _ 210
steel T -

Aien.) 2i+oz oore
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Chapter 8 Solutions

8.1 Since q is taken as positive for an anticlockwise rotation then g=-30° in the
present case. From (8.10) the local strains are

) . N .. -6
_ 8900+ (-300) glz‘xlo'6 + E@—OO ; 300) %‘xlo'6 cos(- 60°) + —200);10 sin(- 60°)

xX'x,y'y' % 2
=213x10°°,- 134x10°°

g X'y —_ @OO' (' 300) OXlOG S.n(' 600) +
2 2 a

so that guyeis equal to 793x10°.

-6
% co(- 60°) = 396.4x10°°

8.2 From (8.11) the principal strainse; and e, are
_&xtey _,_\/agxx ) ewéz +agxy¢2
+ 5 :

=-190x10°° - 360x10"°

G2 =7 5 &20
From (8.11) we obtain the planes of the principal strains
80 9 = tan’ 1?9
- (-200)2 159
which has the two roots of g,=-14° and 76° for g, in the range O£q.,E£180°. To
establish which angle is associated with either e; and e, then let us examine, say, g,=-
14° for e (8.10)

e (-147) =350 +2(- 200)

e
2] =tan?
P &350

106 + -390~ (-200)
2

x10°° cos(- 28°) + 8—20 x10°° sin(- 28°)
= - 360x10°°

observing that e (-14°)=€, S0 we conclude that qp,=-14° and gn,=76°. The principal
strains are illustrated graphically in Figure Sol8.2a).

y , i y
y . y
q, =76
o e dy e, ,
, X
/ / \/ qs . =31
) X ea Ve dXY X
a,, =14
~—/ X
e dx’
3) b)

Figure Sol8.2. Schematic illustration of strains. @) Principal stress element. b)
Maximum shear strain element.

The maximum shear strain is, (8.12)
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) 2 .2 .2 =2
oy 0 _ (@ €,0  ay0 _ |a350- (-200) +§@0‘? = 85x10°°
&2 g 2 o 820 2 g €20

and therefore gne,=170x10° and is illustrated graphicaly in Figure Sol8.2b).

8.3 With g.=0°, ,=60° and q.=120° we find that the system of equations (8.18)
reduces to
60x10° =€,

135x10°° = 0.25e,, +0.75e,, + 0433y,

264x10°° = 025e,, +0.7%,, - 0433,

which result in the global strains 6,=60x10°, &,,=246x10° and g,,=-149x10°.
We will use the transformations equations to determine the principal strains
and their associated planes. From (8.11) the principal strains are
.. .2 .2
€, = ?O-F 24691 \/E@- 2469 +§3 1499 =272x10°% , 34x10°
’ 2 @ 2 O a
and with princi pal planes
% O _ I
I -1 tan™ 19 0_1 (08 =1933
ge-egz 60- 2469 2
Inserting 19.33° into (8.10) we find that Qx,»=19.33° and therefore
0p1=90°+02=109.33°. These results can be compared with Example 8.2 which
alternatively determined the principal strains and planes using Mohr's circle.

qp__t

8.4 Points A and B, centre C and radius R of Mohr’s circle for the in-plane strains
8:=250x10°, g,=-150x10°® and g,=120x10° are as follows

AJ =0)=(e,.0, /2) = (250x10°° 60x10°)
B0 =90) =(e,,- 9,/ 2) =(- 150x10°° - 60x10™°)
C =[e., 0] =[50x10° 0]

2 2
o -
R:\/?” w9 +§@W9 = 200x10°®

2 @ 29
with Mohr's strain circle illustrated in Figure Sol8.4. From Mohr’s circle we find the
principal strains and planes
=0OC+R=(50+209)x10° = 259x10°®
=0C- R=(50- 209)x10°°® = - 159x10°°
i 60 0O

= tan ' =
& &250- 500
2) ,=180+2) , ; J,=983%5

The maximum shear strain (¢/2)ma=R S0 that gnex=418x10°. From Mohr’s circle the
planes of the maximum and minimum shear strains are

20 =-(90-2),)=-733 ; J,=-3665
2], =180 - |2 4|=1067" ; J,=5335

2]

; J,,=835
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B(g=90 )
(-150,-60)

e qu e C[50,0] e e  Xx10

(g, /2x10

Figure Sol8.4. Mohr's circle for the in-plane strains e,=250x10", €,=-150x10° and
0y=120x10°.

8.5 The average norma strain ey, centre C, points A and B and radius R of Mohr’s
strain circle are

e, +e
€ = ——2 =-200x10°°

avg
C =[e,,.0] = [- 200x10°°,]
AJ =07) =(e,.9,,/2) = (- 300x10°° 50x10°°)
B =90') =(e, g,/ 2) = (- 100x10°° - 50x10°°)

2 2

o -

R= [Bx" G0 (850 _111800°¢
8 2 g 82@

Mohr’s circle can now be constructed and is shown in Figure Sol8.5. Since we are
required to determine the strain components on an element that is rotated by 20° in a
clockwise direction then g=-20°. From Figure Sol8.5 the principa plane g2 IS given

by

N

o 0 0. Ll 4308
€300- 2006 2 ' 2 '

so that b=29-20],,=40°-26.57°=13.43°. From triangle DEC we find the local strains
e, = - (OC + Reosb) = - (200 + 1118051343 )x10°® = - 309x10°°

xx ="

1
Jp2=-§tan

240 = . Reinb = - 111810° Sn1343 =-25970° ; g, =51930°

and from triangle D&C we find the remaining local strain ey
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e,, = OC+ Rcosb = (- 200 +1118c0s1343")x10° = - 91.26x10°°

B(g=90)
D g (-100,-50)
-200,0 .
E o e x10
A(q:d) Dl(ey 'y g, 'y 12)
(-300,50)

@, /2, , =R=1118

(g, /2x10°

Figure Sol8.5. Mohr’s circle for the in-plane strains e,=300x10°, €,=-100x10° and
0y=100x10°.

8.6 From (8.10) the local strains are

-6
n _ae'zoo+4ooo 106 4 2200~ 4ooox106 o £ 2000°
X'x,y'y' % 2 % 2
= 332x10°° | 268x10'6
-6
g;'y' = §20024ooo 10°® sin80’ +%cosso° =107x10°°

so that guyeis equal to 214x10°.
From the Hookian equations (1.16) we have
t...
X'y

G

_1 _1 _
€y _E[S ox - NS y.y.] , €y = E[S sy - NS XY] Oy =
Solving these for the in-plane stresses then we have

e m[332 +0.3x268|x10°® = 95MPa

S = E [e +ne
x'x' 1_ nz x'x"

21OX10

=—[e,, +ne,|= [268 +0.3x332]x10°® = 85MPa

Sw T,
E B 210x109

.= o = o = ————214x10°° =17M
or =80 =5 9 Tqre0g o i

8.7 With g,=0°, q»=45° and q.=90° then the system of equations (8.18) reduce to
65x10° =e,,

95x10°° = 05, +05e,, +057,,
25x10° = e,
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which result in the global strains e,=65x10°, g,=25x10° and g,=100x10°. From
(8.11) the principal strains are

2 2
e, te a&, -e,0 o) ) )
e, = ¥+ W +a@Xy - =0885x10°° , - 885x10°°
’ 2 2 o5 &29
and from (8.11) we obtain the planes of the principal strains
20, =tan g 100 6_ ton1(25) = 682
65- 250

which has the two roots of g,=34.1° and 124.1° for g, in the range O£q,£180°.
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Chapter 9 Solutions
9.1 From (9.10) the in-plane strains are

e=zfs.ons,] e, =2[s, s ]

and substituting into the strain energy density, (9.9), we have
— 1 — 1 2 2
U, _E[S oC TS yyeyy] _E[S w ™ 2NS .S +S W]

Integrating U, throughout the entire volume of the plate then the strain energy is given
by
hY V 2 2
U= QUOdV :E(S -2ns s +S W)

9.2 From (9.4) the strain energy density, Uy, is equal to se/2 so that the strain energy
isgiven by

( x) A(X)dx

where A is the cross-sectional area of the bar and isafunction of x. With s(X)=W/A(x)
thenU is

U:ﬂZ‘L dx
2

E 9 A
It remainsto find A(X). Linearly interpolating across the length of the bar from d; to d
then

&, o, doxi _pd’é ol 6 xU
o oy 3 £
and substituting A(X) into U
_O2WA L dx
Epd Q o, OxU
el Sa, LU

a
Theintegral is seen to be of the following general form

0(7) Jax +b) “dx =- 5(ax+b)

ax+b
Performing the integration then U isfound to be
ot L ¢ 1 o oweL
Epd? % d,/d,- 1g1+(d, /d, - 1(x/ L)‘g,o{) Epd,d_
as required.
From Castigiliano's second theorem then the displacement of the bar is, (9.59)
_ U _ AL
W  Epdgd,
When d;=d,=d then the bar is of constant cross-section and d is given by
- W
Epd?

and is seen to agree with d=WL/AE where A=pd?/4.
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9.3 Resolving forces verticaly at joint B then the force, F, in each member is
P
2cos]

and the length, L, of each member is d/cosg. Considering member BC then the strain
energy is, (9.12)

L 2 2
Upe dJ av = 0@2” % Adx SZQL
with x taken along the member axis. Substituting for s and L then
P?d
8EACOS’J
Due to symmetry Uas=Upgc S0 that the total strain energy, U, of the frameis
P%d
4EAc0S’J
From Castigilano’ s second theorem (9.59) the displacement, dg, at joint B is
_lUu_1Te P4 0_ Pd
® TP  {P&4EACOS') & 2EAcoS’]

Uge =

U=Up+Ug =24 =

9.4 Re-arranging (9.49) for applied load W
4 4 o
W= dd” cosa _ 10x5" cos25 . = 504N
3 ecosza 2sinau s . 6C0s”25  2sin®25 U
8D + u 8X50 10e 3 + 3 L’J
The shear stressis given by (9.51)

_ M,(d/2) (WD/2)cosa(d/?2) _ 50.4(50/ 2) cos25° (5/ 2)

2 = 2 2 = 4653MPa
pd”® /32 pd”® /32 p5° /32
and the bending stressis given by (9.52)
M (d/2 ' in25°
_ yg ) _ (\ND/2)?na(d/2) _ 50.4(50/2)4$m25 (5/2) _ 4330Mmpa
pd”® /64 pd”® /64 p5" /64
9.5 Letting |s(=nd) denote the solid length then from (9.40) we have
4 9 44
k=W _ _Gd3 b 25= —45)210 d b D®=45x10%d°
d 8D°n 8D"(l,/d)

From (9.42) with t £120M Pa and re-arranging for D

tpd® _ 120x10°pd°
8w 8x35

Eliminating D from these two equations we have

6
ﬂ =2.07mm
V2439 10

It follows that the mean coil diameter is
D = 1346x10° (2.07x10'3)3 =1194mm

Finally, the number of coilsis equal to

I—s 50 » 24
d 7

D= = 1346x10°d*®

n
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9.6 Considering the right hand side of the ring shown in Figure 9.19 then the bending
moment, M, at angle g is seen to be

M =(R- Rcos] )P = RP(1- cosJ)
For pure bending the strain energy, U, of a beam is given by (9.35) which in the
present case is
“MZdx " M2RdJ
028 "0 28

0

U=

substituting M we have

1 p 2 R3P2 p
U =——JRP(1- cosJ )| 'RdJ = Q1 2cosd +cos’J )
2El ; 2El
Performing the integration
3pP2 < : p 3p2
:RP §J-25inJ +J_+S|n2J[:| :aaRP
2El 2 4 H 4E

An application of Castigliano’s second theorem, (9.59), gives the displacement, d,, at
the point at which the point load P acts
_u _ 3RP
“T P 2El
Since the total gap, d, between the two opposing point forces is equal to twice d, then
d=2d, = PRP
El

asrequired.

To determine the value of P required to produce a total gap of d=10mm we
can re-arrange the above expression for P with I=w//12, where w=2.5mm is the width
of the sguare section
_ Eld _ 210x10°x39.0625x10" **x10x10°°
N 3x(45x10°%)°
Inspection of the expression for bending moment M we observe that M obtains a
maximum at g=180° (position perpendicular to the applied forces P, as expected) and
is equal t0 Mmx=2RP=2x45x10°x95.5=8.595N. Thus, the maximum bending stress
is, (5.30)

P = 955N

- 3 I
8.595x§ez'5x10 °
2 g

M
§ g =- o) o 2= 275MPa
| 39.0625x10

which islessin magnitude than the tensile yield stress of sy=300M Pa.

9.7 From the given beam deflection equation the maximum static deflection, dg,
occurring at x=L is
W Ixgx1®

d. = =
$ 3Bl 3x210x10°x6.75x10°8
The impact factor F is, (9.89)

F=1+ |1+ :1+\/1+A5_4 = 66.85
d, 2.307x10

Therefore, the maximum displacement, dmnax, due to the impact of the falling massis

=0.2307mm
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d,, = Fdg, =1542mm
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Chapter 10 Solutions
10.1 Refer to §10.2.
10.2 Refer to §10.3.
10.3 Refer to §10.4.

10.4 To determine the slope at the free end of the cantilever beam then we can apply a
virtual unit couple moment INm at the free end of the beam, as shown in Figure
S0110.4. The virtua bending moment, M", is

MY=1 O0£xEL
with the bending moment due to the applied load P
M=0 O0£x£Db

M=P(x-b) bEXEL
An analogous eguation to (10.36) can be written for the angle of rotation, g

q——leI Mdx

In the present example we have

Péx’ U _ Pa’-20L+b’6_ P (L-b)° _ Pa’
q__QP(X b)dx_ﬁq bXHD_ES 2 5 B 2 26

Figure S0110.4. A cantilever beam with a virtua unit couple moment applied at the
free end.

10.5 With a virtual unit load applied at the free end, Figure Sol10.5, then the
associated bending moment is
MY =-(R- Rsinq)
whereas the bending moment due to the real applied point force P is
M = - PRcosq
Thus, from (10.36) the horizontal deflection, d, is

1 g2 _ 1 pr2 : _
d=Z-Q M'Mds=—-Q - R(1- sing)(- PRcosq)Rdq =

\p/Z

8'smq + 1coqu = PR’
b

2El

PR3
El
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>

R-Rcosg Rcosg
Figure S0l10.5. A quarter circle beam subject to a concentrated force P and virtual
unit force at the free end.

10.6 To determine the vertica deflection at the free end of the beam we add a virtua
unit load at the free end, see Figure So0l10.6. For the virtual unit load the bending
moment is

MY=x O0E£X£7
For the real applied loading
M=0 O0£xX£E£x3

M =10(x- 3) 3E£x£4
M =10(x- 3)+20(x- 4) 4E£XE£7
From (10.36) we have
Eld = QM “Mdx = (‘Slo(x- 3)xdx+o7[10(x- 3) +20(x - 4)]xdx:

_10%- 31“ +[10x¢ - 55x¢]] =9,7683

Re-arranging for d we have
9,7683

~ 205x10° (5x10'3) = 933mm




10kNi iZOkN 1kN

g

3m Im 3m

>l d

47

X
Figure Sol10.6. A cantilever beam subject to real concentrated loads of 10kN and

20kN and avirtual concentrated unit load at the free end of the beam.

10.7 To determine the deflection at the free end of the beam we apply a unit virtual
point force at this point. With x measured from the free end of the beam then for the
virtual unit load the virtual bending moment, MY, is

MY=x O0O£x£3a
For the real applied loading system we have the following bending moments, M
M=0 O0O£x£fa

M=W(x-a) afXx£f?2a
M =W(x- a)+W(x- 2a) 2af£x£3a
From (10.36) the displacement, d, at the freeend is

2a 3a
Eld = V(x- a)xdx+ JW(x- a) +W(x- 2a)|xdx
a 2a

with no integra in the interval OExEa because M=0. Performing the integrations we
find the desired solution

_6wa’®
El

d

35



Chapter 11 Solutions

11.1 From (11.27) we have
Sq-S._P (b/r) +1 (b/r)’- 13:@é (b/r)? 3
r r @(b/a) -1 (b/a)z- 15 T gb/a)’- 1

Differentiating the radial stress with respect to r we have

ﬂs o= _ p (_2b2/r3) peMg
r  (b/a)*-1 r gb/a)’ -

which is egquivadent to the above eguation and therefore satisfies the equilibrium
equation (11.3).

11.2 With a=75mm, b=250mm and p=75MPa then from (11.27) the radia and
circumferential stresses on the inner surface, r=75mm, are

_ (b/r) - 1u e(250/75) - 1u_-75MPa
@(b/a) - lg @(250/75) - 1

_ (b/r) +13 e(250/75) +1U-90MPa
@(b/a) 15 g(250/75) - 1
Assuming closed ends then from (11.33) the axial stressis
_ p _ 75
S_= =
“ (b/a)*-1 (250/79)°-

r

qq

=74AMPa

11.3 With a=0.5m, b=1m, pi=5MPa, p,=100kPa=0.1MPa then the constants A and B
in (11.20) are

_(b/@)°p,- p _ (1/05)°x01x10° - 5x10°

= = = 153x10°
1- (b/a)* 1- (1/05)*
2(p, - 1*(01x10° - 5x10° .
_Dlpo-p) [ > ) - 1630
1- (b/ a) 1- (1/05)

From (11.21) the radia and circumferential stresses at the radius r=0.75m are
6
s, =A- rEZ = 153x10° - 16310

==~ 137MPa
S = A+rE2 - 153a0° + 2399 _ 4 4ampa
From (11.23) the axial stressis
. po(b/a)° - p _011/05)°- 5 _ 153MPa

1- (b/a)® 1 (1/08)

11.4 Consider the first vessel with the boundary conditions
S, =-45MPa at r = 75mm

s, =0 a r =100mm
From Lame’s equations, (11.16), we find the constants A and B to be given by
A=586x10° , B=5786x10°
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For the inner surface, in which sqq will be maximum, then the circumferential stressis

6
—A+rB—5786 108 + 2788X10° _ 1o 7oMPa

(75x10°%)°

For a safety factor of 2 then the maximum allowable cylindrical stress for the second
cylindrical pressure vessal will be 160.72/2=80.36M Pa.

For the second pressure vessel then our boundary condition (s,=0 at the inner
surface) combined with the maximum design circumferential stress give the two
smultaneous equations, (11.16)

= A'+E P 80.36x10° = LZ
2 (75x10'3)
s =A-B p o=A- B

2
(75x10°* +50x10°?)
noting the two new constants A" and B". Solving for A" and B” we have
A'=2127x10° , B'=332.34x10°

Re-arranging the radial stress component of Lame's equations (11.16) for applied
internal pressure p then we have at the inner surface, r=75mm

N 3U
p=-8n. BU_ &iona0 8923843 4= 378MPa = 3780
A (7sxa07°)"

Thus, the maximum safe working pressure for the second pressure vessel is 378bar.

11.5 We first need to determine the interference pressure, p, so that the maximum
stress (sqq) at the sleeve-collar interface does not exceed 300x10°. Therefore, from
Lame's equations

S i (Ry) = 300x10° = A+ B

(495x10°%)°

B

S rr Rco =0=A-—+
(R.) (100x10'3)2
Solving for A and B we find
A=59x10° , B =59x10*
Theradia stress at r=R; is

4
s . (R)=A- B _soxacr- 210 1gompa
rr i RCZ 2

i (495x10°?)
Therefore, the interference pressure is 182MPa.
From (11.40) the radial compression on the shaft is
@ ( 1- n) _ . 182x10°(50x10°%)
210x10°
From (11.44) the radlal expansion of the collar is

u, :ie PR; % n+(1+n)§°a§
©

U = - (1- 03) =-30.3x10"°m

S

eRco Rc

_495x10° ¢  182x10°(495x10°%)®
~ 210x10° §(100x10°%)? - (49510 ) 6

Therefore, the total radial interferenceis, (11.45)

- 02+ (1+ os)giﬂ% 85x10°°m

¢!
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d = u,] +|u]| = 1153x10°m

11.6 Let the inner and outer cylinders be denoted by vessels 1 and 2 as in §11.10.
From (11.52), (11.51), (11.48) and (11.27) the total radial interference is given by

d=u,- u :%[(S w2z~ NS ,,,2)- (s - NS ”1] [b2 (1- n)(A, - A)+(1+n)(B,- Bl)]
where 2( ) 2) pb4( CZ)
pb“la- ¢
MATE ) R R T
Substituting (A2-A1) and (B,-B;) into d we findly arrive at
JobA-A) (-
E E (a”- b?)(c*- b?)
Re-arranging for p then the interference pressureis
Ed (a°- b°)(c” - b?) _ 210x10°(100x10°°) §(50° - 75°)(100° - 757)u
b (@-¢) (a0

(50° - 1007) g(loﬁ_gmpa

p:

aD> D>

11.7 From (11.72) with p=100MPa, a=100mm, b=175mm and r=100mm then the
circumferential stressis

e e
5, =P 2+(b/r)3 1ooez+(175/100) U_ sa66MPa
@(b/a) -15 2 g(175/200)° - 15

38



Chapter 12 Solutions

12.1 Letting the total strain, e, be the sum of the elastic, e, and plastic, &, strains and
with g,=eJ/5 then eis
e, _6e
e=-e te =g +—==
5 5
From Hooke's law e.=s¢/E and at the point of yielding then se=sy and the total strain

is

e

6s
5E
Substituting this total strain into the constitutive equati on

_Eaﬁso

S Y
200€& 5E 2
Solving for sy then we arrive at

s, =139x10°E -_E
719
12.2 From (12.9) the mean yield str& Sm IS
s, ou a&® S,0
== == +B%-2r%de=s, +BX - 2¥?
@Ye QéY & Bl ST Ew

12.3 To determine the empirical constants C and n of Ludwik's power law from the
given engineering stress and strain data then we require relations (12.11) and (12.14)
which relate the true and engineering components, that is

s =s 4(1+&,) = 340(1+ 03) = 442MPa
=In(1+g,) =In(1+03) = 02624
Inserting these into the Ludwik power law, (12.1), we have
442 = C(0.2624)"
At the point of plastic instability we know from (12.15) that s=ds/de, or from

Example 12.2 that s=Cn" and e=n for Ludwik's power law. Therefore, n=e=0.2624
and upon substitution into the previous equation and solving for C we have

442 = C(02624)*" P C=6279

12.4 The maximum bending stress, s, and shear stress, tmax, for the circular cross-
section bar are, (5.30) and (3.11)
_ My _M(d/2) _32Mm . _TR_Td_16T
S0 T pdd ™3 23 pd®
and substituting into (12.61)
gB2M o’ 6T
& pd® 2 pd®@
Substituting M=cT and dividing by t max We arrive at the required result

Sy = \[3+4c?

t

=52

max
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12.5 Trescas yield criterion is given by (12.29) with the difference in principa
stresses obtained from (12.31). Therefore, the yield stressis

s, :\/(s o~ Sy) +4t? =(500- 100)* +4(100)° = 447MPa

To determine the value of the yield stress according to the Huber-von Mises yield
criterion we will first evaluate the principal stresses, (12.30)

. .2
_as)o("'SWQi\/ééxx'SWQ +1 2

STET o NS 2 5

e "2
= @00;1003 + \/3500'21003 +100° =523MPa, 76MPa

From (12.46) the yield stressis
S, =4s2-5,5,+s2 =523 - (523)(76) + 76 = 489MPa

12.6 From (12.66) the total torque, T, consisting of the elastic torque, Tg, and plastic
torque, Tp, is

é é
T=T +T, —gka3é1- igji_ u——px175X106(25x10 )3e1 1?9 (=5352kNm

a 4

e ¢
with R=50/2=25mm and R,=25-9=16mm. At first yield Rp—R and the torque is equal
to

T, = % KR® = 4.295kNm
and when the entire section is fully plastic then R,=0 and the torque is equal to
T, = %ka” =5727kNm

12.7 From (12.90) the applied bending moment, My, at first yield is

2
h?2 25x1072(4x10?)" x250x10° .
MY:bGSY: ( 6) = 166kNm
From (12.96) the value of applied moment, M, to cause the plasticity to extend to a

depth of 1cmis

3
oM € ey, 67U FL6x10° 6  1aax10” ou
2 § 3€h/i2by 2 g 362a07s 4

For the plasticity to spread throughout the entire cross-section then y,=0 at which
point the bending moment is
%iéxlo?@
a

M, =M S = 25KNm

= 2.29kNm
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Chapter 13 Solutions

13.1 At the nodesi and j we have, (13.23)
fi=a,+a,x , f;,=a,+a,x

Solving for a; and a, wefind
fix;-f,x a:f.-f,
L LR

and substituting into the interpolation function (13.23) then f is

fin-iji+(fj'f )X aé(-XO ﬁ( X,Of
L L L o' L &

a, =

f =

(NS N

where N; and N; are the shape functions of the element and have the following

properties:

Ni=1 at x=x; and Ni=0 at x=x;.

Ni=1 at x=x; and N;=0 at X=x;.

The sum of N; and N, is always equal to unity for x within the range X£EXEX;.
The shape functions are of the same order as the interpolation function.

With x=2 and x=6 then the L=x-x=4. With f;=10 at x=2 and f =20 at x=6 then from
the above interpolation function at x=3 we have Ni=3/4 and N=1/4 with f =12.5. The

valueof f at x=3 is seen to be alinear interpolation of the nodal values.

13.2 From (13.33) the D matrix for plane stress is

. 0 u él1 028 Ou
— u_ 96 a
[D]= nzém 1 0 §=7595A0°028 1 04
g 0 (1- n)/2[:3| go 0 0364
and from (13.36) the D matrix for plane strain is
€l-n n 0 €72 028 0 U

E é

[D]=W§O 1_0n (1- 2?1)/2

From (13.32) the stress vector for plane stressis

—12429x109e028 072 03
go 0 0224

|s u le, u él 028 O u| 60u 16.260
.s Wy [D].e = = 7595x10° 028 1  80yX10°° = | 7.35yx10°
itwp  19sb go 0 036g|155|O t1s],
and similarlyfor plane strain
|s u le U €72 028 O u| 600 18150
|Syyy [D]|ewy 12429x109e028 0.721 80yx106 —|925yX106
itep  19sb eo 0 022g|155|O tis],
13.3 The cross-sectional areas of elements 1 and 2 are
2 2 2 2
Al_%:@_aoz?mm2 A :%:%—LQMmmZ

The element stiffness matrices are, (13.44)
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5027(200x10°) g1 - -1
[KY]= ( )¢t St TN s0108ac’st N/ mm
500 g1 13 &1 1§
1964(120x10°| g1 - -1
[K?] = ( )g Yo g7’ N/ mm
700 1 1§ &1 1§
The structure stiffness matrix and force vector are, using node ordering (1,2,3)
620108  -20108 0 u | 01
[K], = & 20108 2018+3366 -33673N/mm , {F} =1 0 yx10°N
g O - 336.7 336.7 § l185|O

Incorporating the boundary condition u;=0 then the structure system of equations to
be solved for U is

620108 -20108 O Ui Oy jO+Rg
10°€ 20108 23475 -3367%uy={ 0 yx10°
g 0 -3367 3367 [g|1u3|O { 185|O
where R; isthe reaction at node 1. Performing row multi pllcatl ons we have
10%(- 20108u,) = R,
10°(23475u, - 336.7u,) =0
10%(- 336.7u, +336.7u,) = - 185x10°

Solving these equations we find u;=0, u,=-0.092mm and uz=-0.6415mm. Both u, and
Uz are negative and uz<u, as expected. An additional check illustrates that R; is equal
and opposite to the applied force of -185kN. From (13.30) the element strains are

1 1 :
el = I(' U +U,) :%(O- 0092) = - 184x10°®

e = 1(- U, +U,) = i(o.ogz - 06415) = - 785x10°°
L 700
From (13.32) the element stresses are

s’ = E,el, = 200x10°(- 184x10°°) = - 368N / mm?

s 2, = E e, =120x10°(- 785x10°°) = - 94.28N / mm’
and are found to agree exactly with the theoretical estimates

3
Sl :i:-@_-368N/mm

s2 =—=-""1=-0428N/ mm?

13.4 The stiffness matrices of elements 1 and 2 are, (13.81)
e 0.25 u e 0.25
0433 075 sym. a 0433 075 sym.
[ ] e 025 0433 025 [ ] e 025 -0433 025
e0-433 -0.75 -0433 075u e' 0433 -075 0433 075
Inserting into the global stiffness matrix we find the structure system of equations

(e Y ex Y exY ey
oo ocr
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e 025 aou 1 0 U
& 50433 075 oL L0
€-025 0433 025 sym. Gui 1 01
346. 41x10 G y=i Oy
£0433 -075 0 15 GiVa i - 10007
9 0 0 -025 -0433 025 oi 1T 01
e
&0 0 -0433 -075 0433 0753 0p { 0

with node ordering 1, 2 and 3. Multiplying rows 3 and 4 we find

0.25u, =0

346.41x10°(15v,) = - 1000
leading to u,=0 and v,=-1.9245x10°m; with u,=0 due to symmetry. Similarly, the
axial strain, stress and force components in elements 1 and 2 are equivalent and so we
will consider only element 1. The axia strain is, from (13.83)

iulu
I
e }_—[ C -scC s]'Vl'
Ui
Tvzb
10U
0 1
[05 0.866 0.5 0866]. yx10°® =14433x10°°
ll 0
1 19245,

The axial stress and force are
s'=Ee'=02887MPa , F'=s'A=577.32N
From the free-body diagram in Figure 13.28 we observe that 2Tcos30°=1kN
and therefore T=577.35N which agrees exactly with the finite element prediction. The

displacement v, is found by an application of Cadtigliano’s second theorem as in
Exercise 9.4

V,=- ———— =-19245x10°m
2EAcos’J

which, again, is exact agreement with the finite element estimate.

13.5 The cross-sectional area, A, and perimeter, P, for both elements are 25x10°m?
and 20x10°m respectively. Letting elements 1 and 2 have nodes (1,2) and (2,3)
respectively then the stiffness matrix for element 1 has contributions due to
conduction and perimeter convection, (13.118)
q_KeASl -l hPL @ Lu_ e 516 - 49167y
IS5 Logr ¥ (X
L &1 18" 6 & 20 §4a9167 516 M
with the force vector due to {Fy} only, (13.119)

{Fl} hT,PL 110 100

110
Element 2 is identical to element 1 except that it also experiences end-convection
through node 2 so that the stiffness matrix of element 3 s, (13.118)
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[ ] é 516 -49167u 103 hAeO O4_é 516  -4.91670
& 40167 516 T © 107 & 40167 5185 I
Smilarly, addl ng the end- convectl on term to the force vector of element 2 we have
0( Oi 104
{F3} I u hT A: u I u
oy A"l o)
Assembling the element contributlons into the structure stiffness matrix and force
vector we find

é 516 - 49167 0 UITU |Ou

10°8 49167 516+516 -49167“. Ty=10y

g 0 -49167 5185 ng|0 ,o|D
with node ordering 1 to 3. We have a prescribed temperature of 100°C at node 1
which results in a non-homogeneous boundary condition. The stiffness matrix and
force vector are modified by first setting all non-diagonal terms in the first row and
column of the stiffness matrix to zero. Also, the term (-4.9167)x100°C=-491.67 on the

left hand side of the second equation is transposed to the right hand side as +491.67.
The resulting systems of equations is now given by

€l 0 0O uT, u | 100 u
10°0 1032 -4 9167“. Ty=i 49167y
g -49167 5185 ng |O |O

The second through to third equations are now solved in the usual manner, with the
solution vector given by { T} ={100,86.87,82.34} .

13.6 All three elements experience no perimeter convection (P=0) with element 3
experiencing convection at node 4. Assuming a unit cross-sectional area for all three
elements then the stiffness matrix and force vector for element 1 are, (13.118) and
(13.119)
k,Aél -1o_ _él1 -1 10U
1 - Fl
[K] L el 1U Olel 1U ! { } Aog
1 € u
and similarly for element 2
k Aél -1u el -1
KZ - Fz -
[]L2‘311L<I e—llH{}
Element 3 consists of an additional end-convection term
k,Aél -1o € Ou_e01 -0 i0d 1 0 @
K®| === +hAg , WA V={
[«’]= L &1 18™™% 187801 s01d {F} = '1%1250}3
Assembling the elements into the structure stiffness matrix and force vector gives,
with node ordering 1 to 4

¢01 -01 0 OUiTlu i 0 0
o1 02 -o1 o4} {of
€0 -01 02 OluTy LoV
§0 0 -01 501§T,}, f-250f,

Incorporating the prescribed boundary condition T;=25°C then the system of
equations is modified as follows



0 0 0 U|T1u i 210
02 -01 0 yTi _125%
-01 02 -014 Ty LoV

O 0 -01 50.1A1 T4b t- 250[)
where the right hand side of the first equation is set to 25°C. The term (-0.1)x25°C=-
2.5 on the left hand side of the second equation is transposed to the right hand side as
+2.5. Solution of the system of equations yields { T} ={25,15,5,-5}. From Fourier's law
the heat flux for an element of length L and nodesi and j is
dT é 1 ]_ul T U
=-k,—=k_|B[{T} =-
ax o e xx[ ]{ } xxg L LH‘TE

Evauation of gy for al three elements reveals that the heat flux is constant and equal
to Qx=0xA=qx=1 for all three elements.

('D)8)('D) )S‘E:

13.7 The stiffness matrices for all three elements are equivaent and given by (13.136)

]-[]-[e]- A gl

31416x10% 1x10°% a1 - 1y A1 -1
_ i g 13: 9425¢104§" M
033 &1 1 &1 1y

Since there are no sources or sinks and no applied surface flow rates then both Q and
g are equal to zero in (13.138) so that the element force vectors are

(Fh={F}={F) =1

Assembling the element components we have the following structure system of
equations for unknown fluid heads py, ..., ps

él -1 0 prlu 100

é U
9425x10“e1 2 -1.0g |p2| fot

éo -1 2 1u p3?/ IOY

é .

60 0 -1 1gpp 10h
Incorporating the non-homogeneous boundary conditions of p;=0.2m and p,=0.1m in
asimilar manner to that discussed in Example 13.4 we arrive at

L 0 O O plu 11885x10°* Ui

9425x10"‘go 2 -1 Ou' Pa} i 168510}
| &0 -1 2 Ou o) 10425105

- |
D 0 0 gnp fo.425x10°°},
Solving the second and third equations for p, and ps then the solution vector is

{P}={0.2,0.16,0.13,0.2} . From (13.130) the element velocity for an element of length
L withnodesi andj is

5 1 1a P
=k {gt=-k [B{P}=-k_ S = =Wy
Vy xx{g} xx[ ]{ } XXg L LH:\pjg
For example, for element 1 we have
v =-wao?é L L8020 0

§ 035 033h018)
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with equivalent velocities for elements 2 and 3.
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Chapter 14 Solutions

14.1 From 81.11 the in-plane strains are

_E: 2 :ﬂ: 3 :laﬂ EBZE 2 2
e, = x 2axy” , e, Ty bx* , g, 28ﬂy+'ﬂxia 2(2ax y + 30X y)
Differentiating the strains
Te, _ 1 Tey _ 1 (a2
X =—(4 =4ax , =—|3bx“ | = 6bx

Ty’ ‘ﬂy( 29) X ﬂx( )
1129xy 16é u

= —a- + 6bxy), = = (4ax + 6bx
By Ty 20 YT )=l )

Upon substituting these into the compatibility equation, (14.21), we observe that u
and v are compatible.

14.2 Differentiating f we find

2
EZZAX-FBy , ﬂf2:2A ’ Q:O ,
X X ix
i 1°f 1°f
—=2Cy+Bx , —=2C , —=0 ,
Ty < Ty? Ty?
1%f _
™1y ’

Thus, we observe that f satisfies N* =0 since dl terms of f are less than power 4.
The stresses follow immediately from the Airy stresses, (14.46)

_TE T

=—=—(Bx+2 =2C
' ﬂy( )
7 _ 1
yy—ﬂ?—ﬁ(ZAX'i'BX)ZZA
1% l
=-——=-—(2Ax+By)=-B
txy ﬂXﬂy X( + y)

It follows that f provides a solution for a plate subject to uniform stresses along its
sdesof s,=2C, sy=2A andt,~=-B.

From the Hookian equations for a state of plane stress, (14.42), the in-plane
strains are

e, :é[sxx- ns W]:é(c- nA)

e, :é[s - NS XX] :E(A- nC)

_ 2(1+n)t __2(1+n) B

Y E Y E
Integrating the strains we find the displacements

u= (‘j-;-xxdx:é(C- nA)dx=é(C- nA)x+ f (y)

. 2 2
v=g,dy = E(A- nC)dy:E(A- nC)y + g(x)
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where the functions f(y) and g(x) are determined from the boundary conditions.

14.3 Let the resultant stress be §S,,S,,S,) with
S =85/ +S;+S
This resultant stress consists of both normal, Sy, and shear, Ss, components
S?=8 +8L
If the direction cosines of ABC are I=cosa, m=cosb and n=cosg then
Sy =IS, +mS, +nS,

where (S,,S,,S) in terms of the coordinate components are

S =ls +mt, +nt,

S, =lt,+ms +nt ,

S =lt,+mt , +ns
Substituting S, S, and S, into Sy we have
Sy =% , +m’s  +n’s , +2(mt, +mnt , +Int,) , Sg=4/S?- S
Substituting s;; and (I,m,n) into S, S, and S, we have

yz4

1 30
S, =—=(10+5+15) = — =17.32
Lt A
1 50
S, =—=(5+20+25) = — = 2887
LA AN
S, = i(15+ 25+30) = 7 - 4041
3 NE

with Sequal to

— +o—=x tpo—m=e =
&30 &35 &30
The normal and shear stresses are
1 a800, 1 ab06 1 &/00
S, =—— tt+—c—+t+—c—==-=50 , S, =+/526°-50°=16.33
SN N M N NN NET :

The direction of Sy acts normal to plane ABC and is therefore defined by
(1,m,n)=(1/CB8,1/(8,1/CB) with a=b=g=cos™’(1/(B)=54.74°. A useful check is to ensure
that 1°+mP+n?=1 which is the case. The direction of Ss acts parallel to the plane ABC
and let it be defined by (Ismsns) where ls=cosas, me=cosbs and ns=cosg. The
components (S,,S,,S,) can now aternatively be defined as, resolving Sy and Ss

S, =S, cosa +S;cosa = IS, +1.S¢

S, = Sy cosb + S;cosb, =mS +mSg

S, = §, cosg + S cosg = nS +n,.Sg
from which it follows

L2 L2 L2
S:\/aeBOo ab0d a/00 _5o6

1
l, = (S, - |sN)/sS:-E
m =(S,- ms,)/s;=0
1
n, =(S, - nsN)/sS:E

48



confirming that 12 +m¢ +n? =1. The angles as, bs and g are as=cos'(-1/(2)=135°,
bs=cos’(0)=90° and g=cos™(1/CR)=45°. Finally, we can check that the two direction
vectors of Sy and Ss are orthogonal by ensuring that the dot product of (I,m,n) and
(Isms,ng) is equal to zero, that is (1/C8,1/C8,1/38).( -1/C2,0, 1/C2)=0.

14.4 From (14.100) the C matrix is

oS08 03 0 U €7 03 0u
[C] = X £03 1-03 0  g=404x10°903 07 0
(1+03)(1- 2x03) & / ¢ u
g o 0 (1- 2x03)/2§ g0 0 04§
With [€] "=[-19,64,3]x10° then the stress vector is
|s u €.7 0.3 OUI 19u |238u
(s ,y= = 404x10°0.3 0.7 0 64yx10°° = | 158yMPa
'txyb g 0 04g|l 3 |O l0.48|O

14.5 From (14.190) the shear stressest,, and ty; are
ﬂf 7 A
t,=—=-Ggy|l- x Tt T —ao - Xty
Ty 1A 7
The centroid of the triangle is at (x,y)=(0,0) and the three corners are at (2a/3,0), (-
al3,a/~/3) and (-a/3,-a/+/3). Substituting these coordinates into ty, above we

observe that ty, is equal to zero at the centroid and three corners.

14.6 Since the hole in the plate is circular, a/b=1, then from (14.212) the stress
concentration factor is K=3. The maximum of sp that can be applied to the plate is
therefore

From (14.210) the sy, stress at a distance x=a/2=6.25mm from the notch root (notch
root radius of r =b?/a=a=12.5mm) is

K, |—— =100x10°x3 |— 2> = 173vPa
r +4x 125+ 4(6.25)

14.7 From (7.19) the principal stresses are given by

2
o +S 0 ag><><'Syy9 2
_8 \/8 2 5 ¥

With the stresses given by (14.223) for the semi-infinite Boussinesg wedge then the
three main terms in the above expression are

S, tS _ f
e e
,.2 2
ﬁxx_syyq _%fo 2 3\2
2 % TEors V)
2 .2 i s
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Noting that the square root term reduces to

% -S O 2 "2 2 2
g 2 %pr 4] X (X y )
and substituting into the princi paI stresses we finally arrive at the required result
2fx
= 0 , S, =
pr?
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Chapter 15 Solutions
15.1 Refer to 815.2 for a discussion on equivalent stress and strain.

15.2 Refer to 815.2 for a discussion on the constancy of volume condition and its
application to illustrate that Poission’s ratio is equal to %2for incompressible
meaterials.

15.3 For a thin-walled pressure vessel with no shear stresses then the circumferential,
axial and radial coordinate stresses s qo(=pd/2t), Sz(=Sq/2) and S, are equivalent to
the principa stresses s;, s, and s3; where p is the internal pressure, d is the mean
diameter and t is the wall thickness. From (15.1) the equivalent stressis

1 2 J3
:ﬁ\/(sqq ) SZZ) +S§Z+Sc21q :7Sqq
The equivalent plastic strain is given by (15.2) with the plastic strain increments de?,
de’ and de} determined from the Levy-Mises flow rule. The deviatoric component

of SqqiS

V|

R oS +Szz+srr¢_2é 1
S a _Sqq'% * 3 ,‘a_ggsqq'g(
The plastic strain increments are, from (15.22)

2l é 1 I
de; :dec:)q :?%qq ) E(Szz-'-srr)H:ESqq

S_tSs

z rr)é

2l 1
dez _dep :?% z " E(Sqq +S rr)HZO

2l ¢ 1 ¥ I
de? = de? _?%” - E(sqq +su)§:- 55w

with the equivalent plastic strain given by, (15.2)
de ——\/ del, - (dep der”,)2 +(de(§’q - de,”,)2

15.4 In the absence of shearing stresses, t ., then the principal stresses are equal to the
coordinate stresses Sqq, Sir and Sz. With the external pressure p,=0 and the internal
presure pi=p then we have from Lame's equations, (15.34)

Sy, =-P
2
pek +19 . k=b/a
~ P&k
s, =0 (open ends)
Let us examine both the Tresca and Huber-von Mises yield criteria starting with
Trescas criterion.

Tresca'sYield Criterion

Since the coordinate stresses are equivalent to the principal stresses, (15.33)
S-S, =S
qq rr Y
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Substituting the radial and circumferential stresses we find that first yield occurs when
S, 16

Re-arranging for k

With p=100M Pa and sy=250M Pa then k=C6=2.24.
Huber-von MisesYidd Criterion

From the Huber-von Mises yield criterion
2 2
(Srr ) SQQ) +(Sqq ) SZZ) +(Szz' 5”)2:25\2(
With s =0 for open ends then this equation reduces to
S -5,Sq tSeq =S4
Substituting the radia and ci rcumferentlal stresses and re-arranging for p we arrive at
k? -
3k*+1
Re-arranging for k we arrive at the following quadratic equation with unknown K
[3p2 - si]k“ +2s2k? +(p2 - si) =0
Solving, then k is given by

p=sy

12

é 2 2\u
>-S t\/s 3 -S ( -s),
=@ Y IO p Yl:I
e 3p®-s7 u
é 1]

With p=100MPa and sy=250M Pa then the two solutions of k are k=0.69 and k=1.83.
Since k>1 then k=1.83 and is approximately 22% less than the Tresca prediction and
results in approximately 70% difference in cross-sectional area

15.5 The required applied internal pressure, p, to produce an elastic-plastic boundary
to adepth of c=70mm can be found by setti ng r=a and p=- srr in (15. 40)

€ x5 1€ e’ W 205, 1€ 270 o~ W

=-s , =s.,dnc—=+= —= BOOén < 177.45MPa
Pe S TS a5 28 B o 500 28 1000 (i
The fully plastic conditionis reached when c—b and the required pressure, py, is

ad 009
p, =S In%—— =300In %E— = 207.94MPa

15.6 From the material power law
s _  _/-»p
o=l
and upon substitution into the plastic instability condition (15.48) we have
ncle”) ' =v& =+3ce?) b &° =L =026
) ) -

From (15.49) the mean radius and wall thickness at the point of plastic instability are
r =r,e®"? = 045e?°%)2 = o56m , t =t "*"2 =1e" /2 = o gmm

-1
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15.7 From Exercise 15.6 the equivaent plastic strain remains the same. From (15.57)
the mean radius and wall thickness at the point of plastic instability are

r=r,e® 2 = 045e°%2 = 051m , t =t,e ® 2 =1e %2 = 088mm
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Chapter 16 Solutions

16.1 From (16.5) and (16.6) the constants a, b and c and area A are
31:8, b|:-2’C|:-]_
a=-2,b=3,¢-=-1
a=-1,Db =-1,c¢c =2

A=25
From (16.8) the shape functions at point p are
Ni:} N =1 Nk:§
5 "5 5
From (16.11) the displacement vector at point p is
Tua
iy ]

Vi
Iui,j_éNi 0 N; 0 N, 01]|'uj'|'
i y=é Gy =
TVE 80 N 0 N, 0 Nev{
i
i g
Vb
ild
Ll
_é/5 0 1/5 0 3/5 0u3d 1240
- A ,I :i 7
§0 15 0 15 0 3/5f4 j22)
i o
P 5
i2p
16.2 Denoting nodes (1,2,3) by (i,j,k) to assist in the use of the required formulae then
from (16.5) and (16.6) the constants a, b and c and area A are

a-i:9!b|:'2!C|:_1
a=-3,b=2,¢-=-1
a =-2,b =0,c¢ =2
A=2
From (16.8) the shape functions are
N, :%[9- 2x-y] . N, :%[-3+2x- y] . N, :%[-2+2y]
From (16.11) the [N] matrix is
éN, 0O N, 0O N O
[N=¢g N 0 N 0 N
e i j k
From (16.17) the [B] matrix is

~

7

O\ C

1ér2 0O 2 0 0 Ou
_1é a
[B]_Zéo -1 0 -1 0 24

g1 -2 -1 2 2 09
From (13.33) the [D] matrix is



él1 03 03
[D]=219x10°203 1 0 (N/mm

g0 O 035§
From (16.17) the strain vector is
110
Tl
le U e~2 0O 2 0 O Ou'2' i 050
{e}—.ewy [B] 4 0 -1 0 -1 0 2u| y |f|_5yX103
19.5b g1 -2 -1 2 2 Og : 1225,
T5p
From (16.18) the stress vector is
|s u él 03 OUI05U |209u
{s}=ts,y=[Dle} =220x10°%3 1 0 & 15yx10° =} 363 yN/mm’
'txyb g 0 035g1225|o l17325|O

16.3 With x=3, yi=3, x=4, yi=1, x=5 and yx=3 then the constants a, b and c and the
area, A, of the element are
a =7x10°m*> , b =-2x10°m , ¢ =1x10°m

a =6x10°m? , b, =0m C, =-2x103m

J
a, =-9x10°m* , b =2x10°m , ¢ =1x10°m
A=2x10°m?
From (16.17) the [B] matrix is
J
gcbcjb»ckbLI 312-2012g

ebObObOu €2 0 0 0 2 Oy

e é a
[B] é ¢ 0 ¢ 0 cG=26050 1 0 -2 0 1Y
J

and from (13.33) the [D] matrix is

e n 0 u ¢l 03 04§
[O]=1— 31 1 0 §=21978x10"03 1 0
g0 0 (1-n)/2f B0 0 0354

The stiffness matrix is, (16.34)
[K]=[B]'[] BJA=

&2 0 1u
€0 1 2“
€ 1 03 Ou é2 0 0 0 2 Ou
e0 0 11 =€ ! -3 -6
=250e Ou(21978x10 )‘?03 1 025030 1 0 -2 0 142x107)(2x10°°)
0 -

& o0 16 gooossgglz-zolzg

é a
a0 1 24
Performing the multiplications we find
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€435 -01 -07 -12 435

é

g-13 -04 -04 -2 13 24
noting that the matrix is symmetric (K;=K;), the principal terms are all positive and
non-zero (K;>0) and the sum of al terms in ether a row or column are zero
(&K, =0).

To determine the force vector we require just the contribution due to the edge

pressure. From (16.42) the normal pressure term for edge (i,k) is

€4.35 u

é a

& 01 24 i

(K] = 54945 107é 07 14 14 sym. a
= X A -

g 2 0 4 i

a

a

ipU i 00

i i i

PPy i 200|.

_ _LtiOf T 01
{F}_{F}prewure_ 2k : OY_: 0 Y
e Tod

| I

tPyp 1-200p

16.4 Measuring the length coordinate x from node 1 then x=3/4 for point p. From
(16.60) the shape functions are

N, =2x2- 2x+1= 2?39 -2§3—39+1_-3

4 8
N, =2x?- x = 2?39 8.3
4”8
.2
N, = 4x - 4x° _4§3—39-4§3—39 =3
46 €4B 4

The displacement u at point pis, (16.59)

u= N,u, + N,u, + N,u, :ge 8@2 ?92 25+%—-255 251

16.5 To determine the element shape functions (16.84) we first require the area
coordinates of point p. From (16.6) we find

5 1 1 3
A=— , =— , =— , =_
2 A 2 A 2 A 2
From (16.43) the area coordinates of p ar
_A 1L _ Az 1 _A_S3
Xy=—(=Z » Xp=—F—=—= , X3=—===
A 5 A 5 A 5

confirming that Xs=1-x1-X,. Substituting X1, X2 and xz into (16.84)
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5 65 25
1 .61_ 3
N, =(2x, - )x, =€2=- 1= =- =
2 = (22 - I, 5 @5 25
3 61 3
N, =(2x,- x,=22.192=2
R T
11 4
N, =4x,X, =4=—% = —
! Y2 55 25
13 12
N, =4x X, =4—%=—
° % 55 25
13 12
N, =4x X, =4—%=—
! Y '55 25
confirming that SNi=1. The displacement (u,v) at point p is
iU,
I T
jug _éN, 0 N 0u| |', |315u
| — @ I5
ivp §0 N, - 0 NGH,-U-,- 38}3
i Ug.
TVep

16.6 From (16.60) the element shape functions are
N, =2x*-3x+1, N, =2x*-x , N, =4x- 4x°
so that the derivatives with respect to x are
N, _ X : N, _ =4x- 1,
ix ix ix
From (16.70) the Jacobian matrix is
N, N N
[J] T[X ﬂ ﬂ 2 ﬂ 3 X3

TOx x X2+‘|1x

= (4x - 3)1+(4x- 15+ (4- 8)3=

16.7 From (16.53)
11 N
1, = G)CdA= Ao (1., )| [dx,dx, = 2AQ w, f (x,,X,)
00 i=1

noting that |J|=2A. With reference to Table 16.2 the x coordinate at the three
integration points a, b and c are

X, —éxx— 40, 240, 2@0_ 1
60 €60 €33 2
aX X = __+ __+ ﬁ_g_i

30 69 62 2

— ° Sy
X, = & X% ==
i=1

With A=6 and wi=1/6 for al three mtegratlon points then Iy is

|1éé-0 16@-0 2U
% T 6820 +_ y=9
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An exact evaluation of |, can be performed by referring to Example 2.1. Considering
an elemental strip dy at a distance y from the x-axis then

y:h__
With dA=ydx then |y is
— A\,,2 _\bZ _\bZ hXO _h\b 2 3 _hb3
I, = @)X dA—Qx ydx—Qx gﬁ FEdX_BQ(bX - X )dx—f

With b=3 and h=4 then 1,=4(3)%12=9 which agrees exactly with the evaluation of I,
using Gaussian integration.
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Chapter 17 Solutions

17.1 Refer to 817.2 for a discussion of the stress intensity factor, 817.3 for a
discussion of the T-stress and 817.5 for a discussion of several well-known stress
intensity and T-stress expressions.

17.2 For a symmetrically cracked circular hole in a plate with far-fiedd uniform
loading consider the two limits of a® 0 and a® ¥ in the given expression. For a® 0
we have

.24
geRTag ® 1 and K, ® 3365 Jpa

and for the limit a® ¥ we have

.24
geRTag ® 0 and K, ® s+/pa
Thus, as the cracks grow beyond the influence of the circular hole then K tends to the
case of acentrally cracked plate.

The case of a® 0 requires further analysis. When a crack is short (a<<R) then
the crack is approximately equivalent to an edge crack in a semi-infinite plate but with
the applied stress modified by the circular hole stress concentration factor of 3s. In
this case K, is given by

K, =112153s )v/pa = 33645s +/pa
which is essentialy equivaent to the given equation by letting a® 0. Similarly, for the

T-stress as a® 0 we have
T =-05258(3 ) = - 15774s

17.3 Refer to 817.8 for a discussion of plane strain fracture toughness and its
experimental determination.

17.4 The total crack length is 2a=25mm so that a=12.5mm. Neglecting finite plate
effects with Y=1 then for case i) we have

Kic =s (/pa = 220,/p(125x10°°) = 436MNm *?

For caseii) with a=1/p for Irwin'smodel then from (17.91) K¢ is

é 52U

Kc=5; paé1+ap§s—fg 0= 49IMNm ¥
& Sv2y

The discrepancy between the elastic and plasticity correction estimates increases as

S¢Sy increases although the small-scale yielding assumption becomes increasingly

invalid.

17.5 The rotor rotational speed in radians per second is
w = 12x10° gae?_pg =

609

At the critical crack length then K=Kc and a=agiical

1,257radians/ second
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W2R? a8- 2n§
Ke=Yr = /P
IC 8 %1_ n ] p critical

. ;1 1,2572(035)° a8- 2(0.33)6
b 85x10° = 055(8x10°) s 1 03 ‘.a,/pacmical
Solving for agitica We have

Qyiticas = 16.7MM

Comparing K, with DK = YDs +/pa then we observe that the cyclic stressis

2R% 58- 21 2572(0.35)° a8- 2(0.33)0
WR gg N0 _ g0 1257 (039) c (0339 _ o7 105 MPa

8 1-n o 8 ¢ 1-033 g
Since when operating the rotational speed is constant then the only way in which the
stress cycles is from the starting-stopping of the rotor. Using this assumption then DN
will provide us with the number of times that the rotor can be run up to speed. From

(17.159) the number of cyclesis

Ds =r

_ 1 gall m2 _ a#— m/'2 8:
CDs"p™Y™"g m/2-1 g
1 €0.012¥? - 0017 *?u
= — T ;6 g= 250 cycles
411x10 *(6755)°p ¥*(055)° & 05 u

17.6 Refer to 817.11 for adiscussion on long and short fatigue cracks. From Hobson's
growth law (17.164) with a=0 and re-arranging for the number of cycles we have
1 & da 1 a
DN==@ —— =- =[In(d - a)|”"
cQa o cln-al,
With Ds=638MPathen C isfound to be

C =164x10 *(638)""* = 2887x10° ; é = 346

With the long crack condition DK=6MPaCm and Y=2/p then from DK =YDs \/p_a
the total threshold crack lengthis

DK 2 2 2
a, =2— "= (26) =138x10 °m=138mm° d
pY“Ds 20 2
pg 2 (639

With g=10mm and a;=84% of d which isequal to 116rmm then the number of cyclesis
DN = - 346[In(138- 116) - In(138- 10)| = 609 cycles

17.7 For plane strain conditions then (k+1)/8m=(1-n%)/E=V/E¢ Therefore, from
(17.183) the mode | stress intensity factor is

K, =+E'J = |[231x10°(24x10°) = 2355MPay/m
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Chapter 18 Solutions
18.1 Refer to sections 18.1 to 18.8.

18.2 From (18.7) and taking logarithms we have
Iné, =InA+nlns
From a Ine, versus Ins plot with two 1 (s=100MPa) and 2 (s=200MPa) then the
dopeis
_Iné, - Ine, _ In(?.leO"‘) - In(4.4x10'6)

=74328
Ins, - Ins In200- In100
Assuming n to be an integer and equal to 7 then the constant A is, (18.7)
: -6
=G A0 ) a0
s’ 100

in which the first test point has been used.

18.3 From (18.10) and taking logarithms we have
Iné, =InD - il
RT
From a Iné, versus UT plot with two points 1 (T=160K) and 2 (T=200K) then the
dopeis

: | 819x10°3) - In(7.24x10°°
g Inég, - Ine ( ) ( ):-5,625
R 1/T 1/T 1/200- 1/160

from which Q isfound to be
Q =198x5,625 = 11kcal / mol

Findly, solving for D at T=160K we have

11x10°

——— _ b D=87x10°
198(160) §

IND =Ine, +-2 = In(7.24x10°°) +
RT

18.4 For the equivalents strains in the two tests then
te Ofh =t g ¥R
Taking logarithms we have
Int, + (- Q/ RT,) =Int, +(- Q/ RT,)
and re-arranging for Q we arrive at the requi red result

Q= 12[Int Int, ]

18.5 Re-arranging (18.29) for t/t; we have

i_l geﬁg =1- ?9 = 05781
Ao

18.6 From (18.43) the skeletdl radius is
_@a " _qurm)Ru e (1e a0t 00T
g = g J. o - € 4nR(1+3n)/n a e4X Ax50X 344 3 = somm

n-1)
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18.7 The éastic second moment of areafor the rectangular beam is
b(2h)’ _ 50x75°
12 12

The creep second moment of areais, (18.47)
_ 2N Gy _ 2X50X5a8750

=1,757,812mm*

= = € =131,961
2n+1 2x5+1€2 @
Thus, the skeletal depth is given by, (18.52)
,.n/(n-1) .5/(5-1)
y, = el 0 _ ad,757,8120 — 25.45mm

&g & 131,961 0
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Chapter 19 Solutions

19.1 From (19.6) the strain after 100s using the Maxwell model is
o= 1 o _a 100 L1
Sm Eo ° &1000x10°  03x10° %
and according to the Voigt model, (9.16)

5x103 =517x10°°

5x10°

e=(1- e®m3e - = (1- exp[- 100x10°x100/ 10x10°]) oo = 32X10°

19.2 The total strain, e, isthe sum of the strains due to the Maxwell, ey, and Voigt, e,
models from (19.6) and (19.16)

e=e,+e, —gt + 19 +(1 eE””“)S
m, E.o E,

At t=0 the instantaneous elastic strain is e=s¢/En. Differentiating e with respect to
time then the steady creep rateis

u
é_+ Et/m,l:l
mm e m a
Ast® ¥ then e® s,/ m,. The variation of e against t is shown in Figure Sol19.2.

Clearly, when my=0 then the mode! is equivalent to the standard linear solid model.

((E_+E )E_E)s,

s IE
o]

Figure So0119.2. Creep response for the model of Exercise 19.2.

19.3 From the solution of Exercise 19.2 the strain is given by
Et,19% o +(1- € E"“)S

gmm E.o E,
After the removal of stress sg at time t=t then the elastic strain so/E is instantaneoudly
recovered followed by the recovery strain of, from (19.6) and (19.22)

e= S_Otl +S_0(1_ g Et/m )e- Et'/m,

m, E,

ASt® ¥ then e® sot¢my,. The strain-time curveisillustrated in Figure Sol19.3.

e=e te,6 =
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(E +E )E E)s,

s [E
0

m

A

t
Figure S0l19.3. Strain-time curve for the model of Exercise 19.2 with removal of

stress sg at time t=t.

19.4 From (9.33) the relaxation stress at time t=10sis
9 -6
S ( 1 Os) _ 08x10° (10x10 i )
(08+0.2)x10

[o.2x109 +08x10° exp[- (08 + 0.2)x10°x10/ 5x10° | = 2.466kPa

19.5 From (19.6) and (19.10) the creep compliance, C(t), and relaxation modulus,
G(t), for the Maxwell model are
1

t
Clty=—+—= , G(t)=Ee ™"
()=—+= . G(t)
and from (19.16) the creep compliance function for the Voigt model is

1_ e Et/m

ct) ==

with G(t)=0.

19.6 Following a similar procedure as used in the derivation of (19.6) then the total
strain rateis

.. ) 1.
é=¢é +é,=—=s +As"
E
For constant stress s=sg then
é=As, or e=As +B

where B is a constant of integration. If at time t=0 the instantaneous elastic strain is
So/E then B=sy/E and eis given by

s
e:E°+Asgt

19.7 From (19.42) the strain at time t=3500s is
e(3500) = 05x10°(152x10"°)(3500) ™ +

0.25x10°(152x10"*)(3500- 1000)** +
0.25x10°(152x10"?)(3500- 2000)**° -
1x10° x(152x10°9)(3500 - 3000) = 115x10°3



Chapter 20 Solutions
20.1 Refer to 820.2 for asummary of different types of damage.

20.2 From (20.1) the damage parameter is

20.3 From (20.2) the continuity parameter is
y =1-w=1- 081=019
20.4 From (20.2) and (20.9)
E' 67
w=1-y =1- —=1- — =065
E 190
20.5 From (20.15)
s," = Aln+1t, =B,
Letting m=-n and taking natural logarithms we have
Int; =mIns , - InB

From a (Insy, Int;) plot then mis given by, using the first and last data points

= In217- In9711 =-1332 : n=-m=1332
In14- In10

and with B given by
InB = - (nlns , +Int, ) = - (1332In14 +In217) = - 359269
from which B is found

B = exp(- 35.9269) = 25x10™*°
The constant A now follows
B _25x10*

= = =175x10""
n+l 1332+1
20.6 From (20.17) y isgiven by
y =(1- 08)""*" = 08937
and wis equal to w=1-y =1-0.8937=0.1063.
20.7 From (20.30) | is
| =
As t,
At the start of tertiary creep t=0 and w=0 then from (20.23)
é,=As"
Substituting €, then| isgiven by
| =
e.t,

asrequired.
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Chapter 21 Solutions

21.1 From (21.1) and (21.3) the maximum volume fractions (r=R) for square and
hexagonal fibre configurations are

_P@s _p
Vi e (ST) = 4%Rf3 4 » 0.785
2
p a0 _ P
\% hex) = ——=¢—= =——=» 0907
f,max( ) 2 /—B%Rg 2 /—3

From (21.13) and (21.18) E; and E~ for the square and hexagonal configurations at
Vi max @re found to be

E,(heX,\Vi ma) _ 0907+0093n  E. (hex,Vi ) _ 0215+0785n
E,(S0V ne) 0785+0215n ' E.(SQV,,,) 0093+0907n

where n=E./E;. For example, when n=0.1 then Ej(hex,Vsmax)/E|(Sq, Vimax)=1.14 and
E~ (hex, Vi max)/En (S0, Vi max) =1.6.

21.2 From the rule of mixtures (21.13)
E, = E\V, +E,(1- V, ) = 76(045) + 4(1- 045) = 364GPa

21.3 From (21.19)
Ef Em 76x4

= = 697GPa
E,(1-V,)+E,E,  76(1- 045)+4(045)

E. =

21.4 With E;=E=36.4GPa from Exercise 21.2 and E,=E~=6.97GPa from Exercise

21.3then E, G and n from (21.34) are

E=2 E, + °E, = §(36.4) + §(6.97) = 18GPa
8 8 8

8
1E,+2E. = 1(364)+(697) = 6:29GPa
g8 ' 4 8 4

E

-1=043

21.5 From (21.38) the volume fraction at cross-over between low and high Vs is
V= Sm - [ =013
S,-s,+s, 2000-1500+75

If V, >V, then fibre strength dominates.

21.6 From (21.43) the transverse failure strength, s . , is

. _.& V0o e 036
s :smgl- 2|+ =65¢1- 2,|—+=2483MPa
P g e po

21.7 From (21.45) the critical embedded fibre length is
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s’r _ 750x10°(02x10°%)

e = 2t 2(45x106)

=17mm




Chapter 22 Solutions

22.1 Resolving P, we find that P=P,sinq and Q=P,cosg and upon substitution into
(22.7) and (22.18) and superimposing the stresses gives the stresses in the half-plane.

22.2 The stresses for a point force at x=b can be found by replacing x by (x-b) in
(22.7)

_ 2P(x-b)’y
S T 2
p[(x- b)2 +y2]
_ 2Py’
Sy 2
p[(x- b)2 +y2]
R 2P(x- b)y?

- 2

p[(- 0+
To show that t,y is zero along the line x=b/2 write expressions for t , when P is at x=0
and x=b, from (22.7) and the above equation

Pby?

plbr2f ey
which cancel if superimposed.

Pby?

t ,(Pax=0)=- p[(b/2)2+y2]

t,(Pax=b)=

22.3 Referring to Figure 22.26 then the applied pressure distribution is given by

a- |X
p(x):—po( a | |) ; [{Ea
Performing the integrations in (22.20) then the stresses are found to be

i a, I, ou
S . :%i(x- a)q1+(x+a)q2 - 2xq +2y|n%%%g

S :%{(x- a)q, +(x+a)a, - 2xq}
__ By
t w T p_;(q1+q2 B 2q)
wherer, r1, r2, g, g1 and g, are given by

r=x2+y> , r2=(x-a)’+y? , r2=(x+a)’+y

’ tanql:x-—ya ' taan:XZa

2

tanq =

X |<

22.4 For auniform pressure (N=P and T=0) then F (2) and Y (2) are
F(Z) =- _p Ny _dt :L[]n(z_ t)]t:a :L]nﬂ_- 3.9

2pi 0.7 ¢ 2pi t=a  2pi €2+a0
p o dt paz
Y(2)=- =-
@ 2pi Oa(t- 2)° pi(z2 - az)
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With reference to Figure Sol22.4 then let z-t=re' where r=|z-t|. From (14.148) and
(14.152) the stress components are
2p
Sn S, =4ReF(2)=-°5(0; - a,)
2paxezZ-20 _
pi €2°- a°@ p(z2 - az)

S, -Sutat, =2ZF' (9 +Y (2] =

Solving for sy, Syy and ty, we arrive at
2pay|(x® - y* - a?
w =T B( 1° q2)+ ( )

p p (XZ +y2 - az)z +4a2y?

S

2pay(x2 - y?- az)
p (XZ +y2 - az)z +4a2y?

p

Figure Sol22.4. A half-plane subject to a uniform normal pressure.

22.5 From (22.55) the pressure beneath the centre of the punchis

3
p(0) = P__ X0  _5197Mpa

pa p (12.5x10' 3 )

22.6 From (22.70) the radius of the contact radius, a, and total displacement, d, are
e N
éP RR, al-n? 1-nZol

N

a= :
S4 R+RE& E, E, a

7

13
P? R +R a@-ni 1-n38’Y
16 RR, & E, E, 9§

S

d=

T

aD>
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Letting body 2 be the haf-plane, Ri=¥, and R=R, then RiR./(Ri+Ry) is found to
reduce to the following

RR _ RR, =R,=R as R® ¥
R+R  R(1+R,/R)
In addition, letting E=E;=E, and n=ni=n; for both bodies having the same eastic
properties then the above expressions for a and d are found to reduce to

7 "\]J3 z “2\]]3
o = S3PR&L- n?ou q _S9P?&-n’0 3
S2 & E gy | gl6RE E o

asrequired.

22.7 We can obtain expressions for a, d and po for the circular ball in a circular seat
from (22.70) by ssmply making R; negative.
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Chapter 23 Solutions

23.1 Table Sol23.1 summarises the failure strengths of the tested composite material.

failurestrength | ab. frequency | rel. frequency | cum. Ab. frequency | cum. rel. frequency
650 1 0.1 1 0.1

680 2 0.2 3 0.3

700 2 0.2 5 0.5

710 3 0.3 8 0.8

740 1 0.1 9 0.9

750 1 0.1 10 1

Table Sol23.1. Sample of 10 values of the tensile failure strength (MPa) of glass-
polyester unidirectional laminae composite specimens.

23.2 From (23.4) the mean is

__ 17
X=—a X =703MPa
N =
From (23.5) the variance is
N
s? =ié (x - X)* = 84555MPa
N-17

and the standard deviation is the square root of the variance
s=+/¢ =2908MPa

23.3 Since a thrown die can result in a number which is both even and a multiple of 3
then both events can occur simultaneously and therefore the events are arbitrary.
Letting A represent an even number and B represent a number which is a multiple of 3
then A={2,4,6} and B={3,6}. The required probabilities for arbitrary events are
P(A)=3/6=1/2, P(B)=2/6=1/3 and P(AC B)=1/6 so that from (23.13) we have

N 1 1 1 2
P(AE B)=P(A)+P(B)- P(ACB)==+-- ===
(AEB)=P(A)+P(B)- P(ACB) =-+2- =2
23.4 From (23.28) the mean is
3
o_ b _ 3. @y, _exu _9
X = Q(f (x)dx = ngzfadx = S?"uo =3

From (23.30) the variance is

INEEY 96%axp, 6x* 3¢ 8I*U 243
s2=8(x- ) fF(dx= )%~ 22 Ex =z~ - + pa
Q( ) 1) 08" %5 &25 §8 2 167 16

23.5 For case i) then X=1 and s?=1 so that we can obtain the probability directly

from Table 23.2, and is found to 0.9772. For case ii) with X =0.4 and s2=4 then the

standardised variable is

Xx-X _ 2-04
S 2

From Table 23.2 we have F (0.8)=0.7881.

zZ= 08

23.6 From (23.53) and Table 23.3 the mean strength is
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— SO — Y=
s =i &+ = . 0225MOG§L = 718MPa

23.7 Letting the specimen of Exercise 23.6 be denoted by specimen 1 and the new
specimen by 2 then from (23.65) the expected mean strength of the new specimen is,
with §',=718MPa
s,= o1 = M8 _govpa
(V, /v,)™  (045/0.225)

72



